java实现基数排序

一、基数排序(桶排序)介绍

  1. 基数排序(radixsort)属于“分配式排序”(distributionsort),又称“桶子法”(bucketsort)或binsort,顾 名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用
  2. 基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
  3. 基数排序(RadixSort)是桶排序的扩展
  4. 基数排序是1887年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个
    位数分别比较。

二、基数排序基本思想

1、将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。
这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。

三、基数排序图文说明

将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序
在这里插入图片描述在这里插入图片描述

四、基数排序代码实现

要求:将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序

import java.util.Arrays;

/**
 * @program: text
 * @description: 基数排序
 * @author: min
 * @create: 2019-07-29 15:44
 **/
public class RadixSort {
    public static void main(String[] args) {
        int arr[] = {53, 3, 542, 748, 14, 214};
        radixSort(arr);
    }

    private static void radixSort(int[] arr) {
        //1. 得到数组中最大的数的位数
        int max = arr[0]; //假设第一数就是最大数
        for (int i = 1; i < arr.length; i++) {
            if (arr[i] > max) {
                max = arr[i];
            }
        }

        //得到最大数是几位数
        int maxLength = (max + "").length();

        //定义一个二维数组,表示 10 个桶, 每个桶就是一个一维数组
        /**
         * 说明
         * 1. 二维数组包含 10 个一维数组
         * 2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为 arr.length
         * 3. 基数排序是使用空间换时间的经典算法
         */
        int[][] bucket = new int[10][arr.length];
        // 为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
        // 比如:bucketElementCounts[0] , 记录的就是 bucket[0] 桶的放入数据个数
        int[] bucketElementCounts = new int[10];

        // 这里我们使用循环将代码处理
        for (int i = 0, n = 1; i < maxLength; i++, n *= 10) {
            //针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
            for (int j = 0; j < arr.length; j++) {
                //取出每个元素的对应位的值
                int digitOfElement = arr[j] / n % 10;
                //放入到对应的桶中
                bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
                bucketElementCounts[digitOfElement]++;
            }
            //按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
            int index = 0;
            //遍历每一桶,并将桶中是数据,放入到原数组
            for (int k = 0; k < bucketElementCounts.length; k++) {
                //如果桶中,有数据,我们才放入到原数组
                if (bucketElementCounts[k] != 0) {
                    //循环该桶即第 k 个桶(即第 k 个一维数组), 放入
                    for (int l = 0; l < bucketElementCounts[k]; l++) {
                        //取出元素放入到 arr
                        arr[index++] = bucket[k][l];
                    }
                }
                //第 i+1 轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
                bucketElementCounts[k] = 0;
            }
            System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
        }
    }

}

五、基数排序的说明

  1. 基数排序是对传统桶排序的扩展,速度很快.
  2. 基数排序是经典的空间换时间的方式,占用内存很大, 当对海量数据排序时,容易造成 OutOfMemoryError 。
  3. 基数排序时稳定的。[注:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些
    记录的相对次序保持不变,即在原序列中,r[i]=r[j],且 r[i]在 r[j]之前,而在排序后的序列中,r[i]仍在 r[j]之前,
    则称这种排序算法是稳定的;否则称为不稳定的]
  4. 有负数的数组,我们不用基数排序来进行排序, 如果要支持负数,参考: https://code.i-harness.com/zh-CN/q/e98fa9

六、常用排序算法总结和对比

1、一张排序算法的比较图

在这里插入图片描述

2、相关术语解释

  1. 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
  2. 不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
  3. 内排序:所有排序操作都在内存中完成;
  4. 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
  5. 时间复杂度:一个算法执行所耗费的时间。
  6. 空间复杂度:运行完一个程序所需内存的大小。
  7. n: 数据规模
  8. k: “桶”的个数
  9. In-place: 不占用额外内存
  10. Out-place: 占用额外内存
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值