一、基数排序(桶排序)介绍
- 基数排序(radixsort)属于“分配式排序”(distributionsort),又称“桶子法”(bucketsort)或binsort,顾 名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用
- 基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
- 基数排序(RadixSort)是桶排序的扩展
- 基数排序是1887年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个
位数分别比较。
二、基数排序基本思想
1、将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。
这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
三、基数排序图文说明
将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序
四、基数排序代码实现
要求:将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序
import java.util.Arrays;
/**
* @program: text
* @description: 基数排序
* @author: min
* @create: 2019-07-29 15:44
**/
public class RadixSort {
public static void main(String[] args) {
int arr[] = {53, 3, 542, 748, 14, 214};
radixSort(arr);
}
private static void radixSort(int[] arr) {
//1. 得到数组中最大的数的位数
int max = arr[0]; //假设第一数就是最大数
for (int i = 1; i < arr.length; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
//得到最大数是几位数
int maxLength = (max + "").length();
//定义一个二维数组,表示 10 个桶, 每个桶就是一个一维数组
/**
* 说明
* 1. 二维数组包含 10 个一维数组
* 2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为 arr.length
* 3. 基数排序是使用空间换时间的经典算法
*/
int[][] bucket = new int[10][arr.length];
// 为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
// 比如:bucketElementCounts[0] , 记录的就是 bucket[0] 桶的放入数据个数
int[] bucketElementCounts = new int[10];
// 这里我们使用循环将代码处理
for (int i = 0, n = 1; i < maxLength; i++, n *= 10) {
//针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
for (int j = 0; j < arr.length; j++) {
//取出每个元素的对应位的值
int digitOfElement = arr[j] / n % 10;
//放入到对应的桶中
bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
int index = 0;
//遍历每一桶,并将桶中是数据,放入到原数组
for (int k = 0; k < bucketElementCounts.length; k++) {
//如果桶中,有数据,我们才放入到原数组
if (bucketElementCounts[k] != 0) {
//循环该桶即第 k 个桶(即第 k 个一维数组), 放入
for (int l = 0; l < bucketElementCounts[k]; l++) {
//取出元素放入到 arr
arr[index++] = bucket[k][l];
}
}
//第 i+1 轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
bucketElementCounts[k] = 0;
}
System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
}
}
}
五、基数排序的说明
- 基数排序是对传统桶排序的扩展,速度很快.
- 基数排序是经典的空间换时间的方式,占用内存很大, 当对海量数据排序时,容易造成 OutOfMemoryError 。
- 基数排序时稳定的。[注:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些
记录的相对次序保持不变,即在原序列中,r[i]=r[j],且 r[i]在 r[j]之前,而在排序后的序列中,r[i]仍在 r[j]之前,
则称这种排序算法是稳定的;否则称为不稳定的] - 有负数的数组,我们不用基数排序来进行排序, 如果要支持负数,参考: https://code.i-harness.com/zh-CN/q/e98fa9
六、常用排序算法总结和对比
1、一张排序算法的比较图
2、相关术语解释
- 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
- 不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
- 内排序:所有排序操作都在内存中完成;
- 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
- 时间复杂度:一个算法执行所耗费的时间。
- 空间复杂度:运行完一个程序所需内存的大小。
- n: 数据规模
- k: “桶”的个数
- In-place: 不占用额外内存
- Out-place: 占用额外内存