【Ragflow】19.RagflowPlus(v0.2.0):完善MinerU解析/支持图文关联输出

概述

在此版本中,Ragflow-Plus进一步完善了MinerU解析器,并支持图文关联输出功能。

同时,对系统架构进行一些小调整,前台系统构建了单独的docker镜像。

Ragflow-Plus 开源地址:https://github.com/zstar1003/ragflow-plus

容器结构分析

红色框线部分容器为修改或添加

目前,整个共9个容器,miniomysqlesredis为基础容器。

ragflowplus-server为前台系统,vllm-xxx为vllm框架下的编码/语言模型推理容器,ragflowplus-management-xxx为后台管理系统的前后端。

所有容器运行起来需占用至少12GB内存。

对于后台管理系统后端镜像,由于集成了MinerU的各种模型,并内置了安装了LibreOffice用于将office文件数据转换成Pdf,整体体积会较大,约6.14 GB

我有点大,你忍一下

Docker运行方式

对于docker部署的用户,可以参照以下方式进行部署:

1.克隆仓库源码

https://github.com/zstar1003/ragflow-plus.git

2.准备embedding和chat模型

参考上一篇文章内容,下载需要部署的模型,放在docker/models路径下:

模型放置位置

同时对应修改docker-compose.yml文件,模型的volumes参数和文件夹名称对应,served-model-name和后面在前台系统配置时的名称进行对应。

command对应了一系列vllm框架的参数,比如模型精度、多卡配置等参数,可根据vllm文档描述进行修改填充。

参数对应关系

3.启动容器

在项目根路径下,执行:

docker compose -f docker/docker-compose.yml up -d

所有容器正常运行后,

  • 访问"服务器ip:80",进入前台系统

前台系统样式概览

  • 访问"服务器ip:8888",进入后台管理系统

后台管理系统样式概览

新增功能简介

下面介绍本次发布版本的两个特色功能:完全体的MinerU解析和图像生成功能。

完全体的MinerU解析

1.概念界定

为什么叫完全体的MinerU解析?

之前的文章中写过用对接API的方式将MinerU解析的结果插入知识库,但这样并不是一个完整的解析策略。

因为并没有对文本块进行编码,这会导致模型在检索时,只用到关键词的匹配策略,而没有用到向量匹配,造成检索性能下降。

在此次更新中,进一步对文本块的内容进行编码,具体使用方式如下所述。

2.使用方式

1.配置管理员用户的模型参数

在后台管理系统中,默认第一个创建的用户为管理员用户。

也就是说,包含“上传文件”、“新建知识库”、“解析模型参数”都是以创建时间最早的用户作为主体的。

要解析文件,首先要在前台用管理员用户进行登录。

模型提供商菜单中,选择vLLM模型:

选择vLLM的添加模型

配置embedding模型:

配置嵌入模型

这里顺带可以把chat模型一块进行配置,尽管解析并不需要chat模型:

配置语言模型

配置完成后,在系统模型设置中,设置添加的两个模型:

配置模型

2.嵌入模型连接测试

前台配置完之后,进入到后台。

知识库管理菜单中,点击嵌入模型配置,弹窗会自动补全在上一步中的填充信息,点击测试连接,可在解析前,测试嵌入模型是否能正常工作。

测试嵌入模型是否连通

如果嵌入模型连接无误,可进入到下一步的文件解析。

3.文件解析过程

点击知识库的查看按钮,可在此界面将文件添加进单独的知识库。

对于每个添加进知识库的文件,可以进行单独的解析和移除。

点击解析,会出现单个文件的解析进度和运行情况。

单个文件解析过程

当然,文件多时,一个个点太麻烦了。

因此,提供了一种懒人解手的批量解析方式。

点击批量解析按钮,系统会在当前知识库内,自动查找所有未解析的文件,执行批量解析。

批量解析过程

不同于ragflow原生的多线程并发解析方式,这种批量解析会依次对每个文件进行处理,一个文件解析完成后,才轮到下一个文件。

因此,这种方式不会造成解析一半,卡住的情况。

不怕慢,只怕停。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zstar-_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值