求解斐波那契数列

来源于《剑指offer》

package algorithm;
/*
 * @author weijie
 * 实现了递归求解斐波那契数列
 * 实现了树形拆分后的自下往上计算求解斐波那契数列
 * 矩阵公式比较生僻,暂未实现(2018-11-07)
 * @date 2018-11-07
 */

public class Fibonacci {
    public static void main(String[] args)
    {
        int n =40;
        long start1 = System.currentTimeMillis();
        System.out.println(fibonacciFromBottom(n));
        long end1 = System.currentTimeMillis();
        System.out.println("start:" +start1 +",end:" +end1 +",takes:"+(end1-start1));
        
        long start2 = System.currentTimeMillis();
        System.out.println(fibonacciByRecursion(n));
        long end2 = System.currentTimeMillis();
        System.out.println("start:" +start2 +",end:" +end2 +",takes:"+(end2-start2));
        
    }
    
    public static long fibonacciByRecursion(int n)
    {
        long result =0l;
        long[] fi = {0,1};
        if(n<2) return fi[n];
        
        return fibonacciByRecursion(n-1)+fibonacciByRecursion(n-2);
    }
    
    public static long fibonacciFromBottom(int n)
    {
        long[] fi = {0,1};
        if(n<2) return fi[n];
        long fibonacciMinusTwo =0l;
        long fibonacciMinusOne =1l;
        long fibonacci =1l;
        for(int i=1;i<n;i++)
        {
            fibonacci = fibonacciMinusOne + fibonacciMinusTwo;
            fibonacciMinusTwo = fibonacciMinusOne;
            fibonacciMinusOne = fibonacci;
        }
        return fibonacci;
    }
}

经测试发现,在求f(40)的时候递归方式和自底向上的方式的效率就有了显著的差异,如下是实测截图

f(30)的测试结果

f(40)的测试结果

在C语言中,有多种方法可以求解斐波那契数列。下面我将介绍四种常用的方法: 1. 递归法:递归法是最常见的求解斐波那契数列的方法之一。递归函数会不断调用自身来计算斐波那契数列的值。你可以使用以下代码来实现递归求解斐波那契数列: ``` int Fibonacci(int x) { if (x == 1 || x == 2) // 当x等于1或2时,直接返回1 return 1; if (x == 0) // 当x等于0时,返回0 return 0; return Fibonacci(x - 1) + Fibonacci(x - 2); // 递归调用自身求解斐波那契数列的值 } ``` 2. 迭代法:迭代法是通过循环来计算斐波那契数列的值。你可以使用以下代码来实现迭代法求解斐波那契数列: ``` int Fibonacci(int x) { int a = 0; int b = 1; int c = 0; if (x == 1) // 当x等于1时,返回1 return 1; if (x == 0) // 当x等于0时,返回0 return 0; while (x >= 2) { c = a + b; a = b; b = c; x--; } return c; } ``` 3. 矩阵求解法:矩阵求解法是一种更高效的求解斐波那契数列的方法。它利用了斐波那契数列的特性和矩阵运算来求解。这种方法的时间复杂度较低。如果你对矩阵运算感兴趣,可以使用以下代码来实现矩阵求解求解斐波那契数列。 4. 特殊性质公式法:特殊性质公式法是另一种求解斐波那契数列的方法。它利用了一个特殊的公式来计算斐波那契数列的值。你可以通过以下代码来实现特殊性质公式法求解斐波那契数列: ```c int Fibonacci(int x) { if (x == 1 || x == 2) // 当x等于1或2时,直接返回1 return 1; if (x == 0) // 当x等于0时,返回0 return 0; int a = x / 2; int b = x - a; return Fibonacci(a + 1) * Fibonacci(b) + Fibonacci(a) * Fibonacci(b - 1); // 使用特殊公式计算斐波那契数列的值 } ``` 这些都是在C语言中求解斐波那契数列的常用方法。你可以根据自己的需求选择其中一种方法来使用。希望对你有帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值