求解斐波那契数列

来源于《剑指offer》

package algorithm;
/*
 * @author weijie
 * 实现了递归求解斐波那契数列
 * 实现了树形拆分后的自下往上计算求解斐波那契数列
 * 矩阵公式比较生僻,暂未实现(2018-11-07)
 * @date 2018-11-07
 */

public class Fibonacci {
    public static void main(String[] args)
    {
        int n =40;
        long start1 = System.currentTimeMillis();
        System.out.println(fibonacciFromBottom(n));
        long end1 = System.currentTimeMillis();
        System.out.println("start:" +start1 +",end:" +end1 +",takes:"+(end1-start1));
        
        long start2 = System.currentTimeMillis();
        System.out.println(fibonacciByRecursion(n));
        long end2 = System.currentTimeMillis();
        System.out.println("start:" +start2 +",end:" +end2 +",takes:"+(end2-start2));
        
    }
    
    public static long fibonacciByRecursion(int n)
    {
        long result =0l;
        long[] fi = {0,1};
        if(n<2) return fi[n];
        
        return fibonacciByRecursion(n-1)+fibonacciByRecursion(n-2);
    }
    
    public static long fibonacciFromBottom(int n)
    {
        long[] fi = {0,1};
        if(n<2) return fi[n];
        long fibonacciMinusTwo =0l;
        long fibonacciMinusOne =1l;
        long fibonacci =1l;
        for(int i=1;i<n;i++)
        {
            fibonacci = fibonacciMinusOne + fibonacciMinusTwo;
            fibonacciMinusTwo = fibonacciMinusOne;
            fibonacciMinusOne = fibonacci;
        }
        return fibonacci;
    }
}

经测试发现,在求f(40)的时候递归方式和自底向上的方式的效率就有了显著的差异,如下是实测截图

f(30)的测试结果

f(40)的测试结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值