题目
输入一个整数n,求1~n这n个整数的十进制表示中1出现的次数。
例如,输入12, 1~12这些整数中包含1的数字有1、10、11和12,1一共出现了5次。
思路
思路:
讲道理,我觉得这道题书上讲的思路并不怎样,而且书上讲得挺模糊的。
我自己想了个办法,挺好解决这道题的。
解法:
以21305这个数为例子
万位出现1的情况有:10000-19999, 一共10000次
千位出现1的情况有:01000-01999, 11000-11999, 21000-21305, 一共2000+306次
百位出现1的情况有:00100-00199, 01100-01199, 02100-02199, …, 21100-21199, 一共2200次
十位出现1的情况有:00010-00019, 00110-00110, …, 21210-21219,(没有21310),一共2130次
个位出现1的情况有:00001, 00011, 00021, …, 21301, 一共2130+1次
所以可以得到以下公式:
万位出现1的情况有(万位大于1):(21305 / 100000 + 1) * 10000 = 10000 次
千位出现1的情况有(千位等于1):(21305 / 10000) * 1000 + 21305 % 1000 + 1 = 2306 次
百位出现1的情况有(百位大于1):(21305 / 1000 + 1) * 100 = 2200 次
十位出现1的情况有(百位等于0):(21305 / 100) * 10 = 2130 次
个位出现1的情况有(个位大于1):(21305 / 10 + 1) * 1 = 2131 次
时间复杂度为O(k)
k为位数
不知道怎么用比较书面化的语言表达出来,有朋友擅长的话可以帮我表达以下 0____0 感激不尽
代码
public class _43_NumberOf1 {
public static int NumberOf1Between1AndN_Solution(int n) {
if(n <= 0)
return 0;
int sum = 0;
for(int k = 1; n / k > 0; k *= 10) {
int mod = n / k % 10;
if(mod > 1) {
sum = sum + (n / (k * 10) + 1) * k;
}
else if(mod == 1) {
sum = sum + (n / (k * 10)) * k + (n % k) + 1;
}
// mod == 0
else {
sum = sum + (n / (k * 10)) * k;
}
}
return sum;
}
}
测试
public class _43_Test {
public static void main(String[] args) {
test1();
test2();
test3();
}
/**
* 功能测试
*/
private static void test1() {
int res = _43_NumberOf1.NumberOf1Between1AndN_Solution(21305);
MyTest.equal(res, 18767);
res = _43_NumberOf1.NumberOf1Between1AndN_Solution(12);
MyTest.equal(res, 5);
}
/**
* 边界测试
* 1.输入1
*/
private static void test2() {
int res = _43_NumberOf1.NumberOf1Between1AndN_Solution(1);
MyTest.equal(res, 1);
}
/**
* 极端测试
* 1.输入0
* 2.输入负数
*/
private static void test3() {
int res = _43_NumberOf1.NumberOf1Between1AndN_Solution(0);
MyTest.equal(res, 0);
res = _43_NumberOf1.NumberOf1Between1AndN_Solution(-2);
MyTest.equal(res, 0);
}
}