hdu5418 最短哈密顿回路

本文介绍了如何运用Floyd算法求解最短哈密顿回路的问题。首先通过Floyd算法找出所有两点间的最短路径,接着采用动态规划的方法,利用二进制表示城市状态进行求解。在动态规划过程中,状态转移方程用于计算从特定起点到目标城市的最短路径,同时结合深度优先搜索进行剪枝。整个解决方案结合了动态规划与Floyd的思想,有效地避免了超时错误。
摘要由CSDN通过智能技术生成

  先用floyd求出每两点之间的最短路,然后就是最短哈密顿回路问题。一开始我用深搜+剪枝计算最短哈密顿回路,毫无意外TLE了。

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<string>
#include<map>
#include<set>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<sstream>
#define LL long long
#define OJ_DEBUG 0
#define READ_FILE 0
using namespace std;
const int NN_MAX = 25;
const int MM_MAX = 100010;
const int INF = 0x1fffffff;
/**********************************************************/
int maps[NN_MAX][NN_MAX];
bool vis[NN_MAX];
int t,n,m,mm,last;
/**********************************************************/
int min_2 (int x,int y) {
  return x<y?x:y;}
int max_2 (int x,int y) {
  return x>y?x:y;}
void floyd();
void dfs(int x,int num,int cnt);
/**********************************************************/
int main()
{
    if (READ_FILE) freopen ("in.txt","r",stdin);
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d %d",&n,&m);
        for(int i=0;i<=n;i++)
            for(int j=0;j<=n;j++)
                maps[i][j]=(i==j?0:INF);
        int a1,a2,a3;
        for(int i=0;i<m;i++){
            scanf("%d %d %d",&a1,&a2,&a3);
            if(maps[a1][a2]>a3)
                maps[a1][a2]=maps[a2][a1]=a3;
        }
        floyd();
        memset(vis,0,sizeof(vis));
        vis[1]=1; last=0; mm=INF;
        dfs(1,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值