欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
- 数据集介绍
数据集名称:鸢尾花(Iris)数据集
来源:Fisher, 1936收集整理
数据规模:包含150个数据样本,分为3类(Setosa、Versicolour、Virginica),每类50个数据
特征属性:每个数据包含4个属性,即花萼长度、花萼宽度、花瓣长度、花瓣宽度 - 深度学习模型与方法
模型选择:在Matlab中,我们可以使用其深度学习工具箱(Deep Learning Toolbox)来构建和训练神经网络。对于鸢尾花分类任务,可以选择使用多层感知机(MLP)、卷积神经网络(CNN,尽管对于此类简单分类任务可能不是首选)或其他适合的神经网络结构。
方法介绍:深度学习模型通过学习输入数据(即鸢尾花的四个特征属性)与输出标签(即花的种类)之间的映射关系,实现分类功能。通过训练数据来优化模型参数,使得模型在测试数据上也能达到较高的分类准确率。 - 实现步骤
数据准备与预处理:使用Matlab的数据导入和处理函数读取鸢尾花数据集,并进行必要的预处理,如数据归一化等。
构建神经网络:在Matlab中,使用深度学习工具箱的函数和工具来构建神经网络。设置网络结构、激活函数、优化器等参数。
训练神经网络:使用训练数据对神经网络进