黑群晖折腾之安装Transmission并替换TWC增强中文界面

本文介绍如何在群晖NAS上安装Transmission BT下载工具,并通过TWC增强界面提升用户体验。包括添加套件来源、设置下载路径、安装TWC中文界面等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transmission一款好的下载工具,但是默认的界面,管理功能太少了而且丑

  一、首先安装Transmission这个BT下载程序。

1、进入群晖点击套件中心–设置–套件来源,点新增添加一个源:http://packages.synocommunity.com/ 后保存。

 2.安装设置transmisstion下载路径及账号密码,点击社群,往下拉找到transmission,安装套件,会让你选择填写下载路径,下一步,设置账号密码

 

 

3、按照以上2张图设置后下一步即可完成Transmission的安装,然后就可以用群晖IP:9091进行访问。 

默认的界面,真的丑,功能少

接下来就是重点了,安装TWC增强中文界面

项目地址是:https://github.com/ronggang/transmission-web-control

通过群晖的“任务计划”自动安装及定期自动更新

打开项目地址,下载这个脚本install-tr-control.sh

然后通过 File Station 将安装脚本上传到群晖NAS一个指定目录中 ,我这里是/volume1/downloads

 默认下载的脚本没有执行权限,通过任务计划无法执行,所以需要设置权限

创建任务计划
          依次打开 DSM 的 “控制面板” -> “任务计划”;
          选择 “新增” -> “计划的任务” -> “用户定义的脚本” ;
          任务名称用英文,如:AutoUpdateTrWebControl,用户帐号选择 root 并选中 已启动;

/volume1/downloads/install-tr-control.sh auto  这个是存放上传脚本的路径

脚本最后一定要加入 auto ,要不然脚本不会自动下载;注:auto 前有一个空格; 

执行任务
         任务创建好后就可以执行了,可以手工运行,选中该任务,点击 “运行”,脚本将会自动下载最新的发行版本,执行过程根据网络情况而定,如果不发生错误,过几分钟后就可以访问 http://IP:9091 查看结果。

效果图:

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值