稀疏数组的压缩存储

本文介绍了如何对稀疏数组进行压缩存储以节省内存,压缩后数组规模为(非零元素个数+1)*3。通过示例展示了从4x4稀疏数组到压缩数组的转换,并用Java代码实现该过程,以及从压缩数组恢复原数组的方法。
摘要由CSDN通过智能技术生成

假如有一个4X4的二维数组
在这里插入图片描述
可以看到,这个数组大部分元素都是0,因此是一个稀疏数组,假如每一个元素都要存储,需要存储16个元素,大大浪费内存,因此我们在存储时只需要存储数组的必要信息跟非零元素,将原始数组转换为
在这里插入图片描述
进行存储,第一行表示原数组的规模跟非零元素的个数,第二行表示原数组第一个非零元素所在的行和列和非零元素的值,以此类推,转换后的数组元素个数为9,因此大大节省了存储空间
由以上分析,我们知道,一个稀疏数组进行压缩存储,压缩后数组的规模为:(sum+1)*3,其中sum表示稀疏数组中非零元素的个数,接下来,用java代码实现此转换

//定义稀疏数组,sparseArray[sum+1][3],sum为原数组非零元素个数
		//1.遍历原始数组,确定非零元素个数
		int sum = 0;
		for (int i = 0; i < 4; i++) {
   
			for (int j = 0; j < 4; j++) {
   
				if (array[i][j] != 0) {
   
					sum++;
				}	
			}	
		}
		//2.定义稀疏数组
		int sparseArray[][
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值