问题描述
回文串,是一种特殊的字符串,它从左往右读和从右往左读是一样的。小龙龙认为回文串才是完美的。现在给你一个串,它不一定是回文的,请你计算最少的交换次数使得该串变成一个完美的回文串。
交换的定义是:交换两个相邻的字符
例如mamad
第一次交换 ad : mamda
第二次交换 md : madma
第三次交换 ma : madam (回文!完美!)
交换的定义是:交换两个相邻的字符
例如mamad
第一次交换 ad : mamda
第二次交换 md : madma
第三次交换 ma : madam (回文!完美!)
输入格式
第一行是一个整数N,表示接下来的字符串的长度(N <= 8000)
第二行是一个字符串,长度为N.只包含小写字母
第二行是一个字符串,长度为N.只包含小写字母
输出格式
如果可能,输出最少的交换次数。
否则输出Impossible
否则输出Impossible
样例输入
5
mamad
mamad
样例输出
3
贪心思路:选择单前步骤的最优解。
按照题目的理解就是每次都把相同字符移动到相对应的位置的解,以此来构成回文串,
由所有子最优解得出题目的最优解
起始状态:
0 | 1 | 2 | 3 | 4 |
m | a | m | a | d |
i | j |
第一次交换:
0 | 1 | 2 | 3 | 4 |
m | a | m | a | d |
i | t | j |
此时查找到与 i 下标表示的字符相同的字符下标为 t ,此时需要交换的次数为 j - t = 2 交换后为
0 | 1 | 2 | 3 | 4 |
m | a | a | d | m |
i | t | j |
此时根据上述步骤需要交换的次数为 j - t = 1;
0 | 1 | 2 | 3 | 4 |
m | a | d | a | m |
i j |
所以总的需要交换的次数就是 1 + 2 = 3
另外:找不到对应的字符(即字符串中只有单一一个字符)且字符串长度为偶数,这种情况无法组成回文串
或者 出现多于两个或两个以上的单个字符,也是无法组成回文串的
#include<iostream>
using namespace std;
int main()
{
freopen("2.txt","r",stdin);
char a[8010];
int n;
cin>>n;
cin>>a;
int i,j,t,k,l;
int step=0,ans=0;
j=n-1;
for(i=0;i<j;i++){
t=j;
while(a[i]!=a[t])
t--;
if(i==t){ //只有单个字符
ans++; //统计单个字符
if(n%2==0||ans>1){ //出现单个字符且字符串长度为偶数 或者 出现1次以上单个字符
cout<<"Impossible";
return 0;
}
//第一次出现
step += n/2 - i; //增加把单个字符移动到中间的步数,字符串不用交换
continue; //跳过这次循环
}
//交换字符
step += j-t; //交换的步数
char tem = a[t]; //交换字符
for(l=t;l<j;l++){
a[l]=a[l+1];
}
a[l]=tem;
j--; //缩短距离
}
cout<<step;
return 0;
}