python OpenCv 人脸检测

import cv2.cv as cv
import cv2
from cv2 import VideoCapture

cv.NamedWindow("W1", cv.CV_WINDOW_AUTOSIZE)

#找到设备对象
capture = cv.CaptureFromCAM(0)

#检测人脸函数

def repeat():

    #每次从摄像头获取一张图片
    frame = cv.QueryFrame(capture)
    image_size = cv.GetSize(frame)#获取图片的大小
    
    greyscale = cv.CreateImage(image_size, 8, 1)#建立一个相同大小的灰度图像
    cv.CvtColor(frame, greyscale, cv.CV_BGR2GRAY)#将获取的彩色图像,转换成灰度图像
    storage = cv.CreateMemStorage(0)#创建一个内存空间,人脸检测是要利用,具体作用不清楚
    
    cv.EqualizeHist(greyscale, greyscale)#将灰度图像直方图均衡化,貌似可以使灰度图像信息量减少,加快检测速度
   
    
    # detect objects
    cascade = cv.Load('haarcascade_frontalface_alt.xml')#加载Intel公司的训练库

    #检测图片中的人脸,并返回一个包含了人脸信息的对象faces
    faces = cv.HaarDetectObjects(greyscale, cascade, storage, 1.2, 2,
                                    cv.CV_HAAR_DO_CANNY_PRUNING,
                                    (50, 50))

    #获得人脸所在位置的数据
    for (x,y,w,h) , n in faces:
        cv.Rectangle(frame, (x,y), (x+w,y+h), (0,0,255),20)#在相应位置标识一个矩形 边框属性(0,0,255)红色 20宽度
        cv.ShowImage("W1", greyscale)#显示互有边框的图片
    cv.ShowImage("W1", frame)

#循环检测每一帧的图片 ESC键退出程序
while True:
    repeat()
    c = cv.WaitKey(10)
    if c == 27:
        cv2.VideoCapture(0).release()
        cv2.destroyWindow("W1")
        break

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值