- 博客(157)
- 收藏
- 关注
原创 Python scikit-learn详解:从入门到实战,机器学习的“瑞士军刀”
是基于NumPy、SciPy和Matplotlib的开源机器学习库,诞生于2007年,由法国INRIA研究所主导开发。它专注于监督学习(分类、回归)和无监督学习(聚类、降维),同时提供数据预处理、模型评估、超参数调优等配套工具,是初学者入门机器学习的理想选择。scikit-learn的核心价值在于“降低机器学习的入门门槛”——它将复杂的算法封装成简单的API,让开发者无需深入理解算法细节,就能快速实践。无论是分类、回归、聚类,还是特征工程、模型评估,scikit-learn都提供了一站式解决方案。
2025-11-03 22:48:01
826
1
原创 Python Seaborn详解:让数据可视化更简单、更美观的利器
Seaborn是Python中基于Matplotlib的高级数据可视化库,以简洁的代码生成专业美观的统计图表。它内置多种主题风格,简化了热力图、小提琴图等复杂图表的绘制流程,支持自动计算统计指标。本文介绍了Seaborn的核心优势、安装配置、基础图表(如散点图、箱线图)和高级功能(如热力图、聚类图),通过实战案例展示如何快速提升数据可视化效果。Seaborn特别适合探索性数据分析,能显著减少代码量并提升图表质量。
2025-11-03 22:40:19
808
1
原创 Python NumPy广播机制详解:从原理到实战,数组运算的“隐形翅膀”
NumPy广播机制可以自动处理不同形状数组的运算,通过虚拟扩展使数组形状兼容,避免了实际数据复制。核心规则包括:维度补全、尺寸兼容和结果形状确定。广播简化了代码,提升了效率,适用于标量与数组、一维与多维数组等多种场景。使用时需确保数组形状满足广播规则,否则会报错。广播底层通过索引计算实现高效运算,是NumPy中重要的核心特性。
2025-11-02 23:02:49
1047
1
原创 Python pandas数据透视表(pivot_table)详解:从入门到实战,多维数据分析利器
本文介绍了pandas中pivot_table数据透视表的核心功能及应用方法。通过多维度分组统计(行/列分组)、灵活的聚合函数(如求和、均值)以及缺失值填充等功能,数据透视表能高效实现复杂数据分析需求。文章从基础参数讲解到实战案例,展示了如何按地区、产品等维度统计销售额、利润等指标,并通过margins添加总计行/列。该工具比groupby更直观灵活,是数据分析中的"神器"。
2025-11-02 22:58:06
1088
1
原创 Python Selenium详解:从入门到实战,Web自动化的“瑞士军刀”
本文介绍了Selenium在Web数据爬取和自动化测试中的核心应用。Selenium通过直接操控浏览器,可模拟人类操作(点击、输入、滚动),有效处理JavaScript动态渲染页面。文章从核心概念切入,详细讲解了环境搭建、元素定位(如ID、XPath、CSS选择器)和交互操作(输入、点击等),并提供了百度搜索的实战案例,帮助开发者掌握动态网页爬取和测试技能。
2025-11-01 18:45:21
1499
原创 Python Flask详解:从入门到实战,轻量级Web框架的魅力
本文介绍了Python轻量级Web框架Flask的核心特性和基础用法。Flask以"微框架"理念设计,仅提供路由、模板等核心功能,通过扩展实现其他需求,适合小型项目和快速开发。文章从安装环境开始,通过"Hello World"示例展示基本开发流程,详细讲解了路由定义(包括动态路由和HTTP方法处理)、请求数据获取(request对象)以及响应构建(JSON返回和重定向)等核心功能。Flask简洁直观的API和灵活扩展性使其成为Python Web开发的理想选择,开发者
2025-11-01 18:36:03
1743
原创 Python requests详解:从入门到实战,HTTP请求的“瑞士军刀”
Python的requests库是一个简洁强大的HTTP请求工具,适用于爬虫、API调用等场景。相比urllib,它简化了请求流程,自动处理编码、JSON解析等细节,支持GET、POST等方法。通过params传递URL参数,用data或json提交表单/JSON数据,还能设置请求头、Cookies、超时等。其直观API和丰富功能让开发者能轻松应对各类HTTP请求任务,成为Python网络请求的首选库。
2025-10-31 22:40:25
892
原创 Python matplotlib详解:从入门到精通,数据可视化利器
Matplotlib是Python的核心数据可视化库,支持折线图、散点图、柱状图等数十种图表类型。本文系统介绍matplotlib的使用方法:从安装导入(pip install matplotlib)到核心概念(Figure画布和Axes子图),重点讲解了四种基础图表——折线图展示趋势变化(plot())、散点图分析变量关系(scatter())、柱状图对比分类数据(bar()/barh())以及直方图呈现数据分布(hist())。通过参数定制颜色、大小、透明度等属性,结合示例代码演示如何添加标题、标签、图
2025-10-31 22:31:48
1604
原创 Python NumPy详解:从基础到实战,数值计算的“发动机”
NumPy是Python科学计算的核心库,提供高效的多维数组(ndarray)和向量化运算功能。本文系统介绍NumPy的核心应用:1) 对比ndarray与Python列表的差异,展示其高效的内存存储和计算优势;2) 详解数组创建方法,包括特殊数组生成函数;3) 解析数组索引和切片操作,特别注意视图与副本的区别;4) 重点讲解向量化运算,通过算术运算、数学函数和广播机制等实现高效计算。掌握NumPy可为后续学习Pandas、机器学习等奠定基础,使数值计算效率提升10-100倍。
2025-10-30 20:52:28
1158
1
原创 Python pandas详解:从入门到实战,数据分析必备工具
pandas是Python的一个开源数据分析库,诞生于2008年,名字来源于“Panel Data”(面板数据,一种多维结构化数据)。它基于NumPy构建,提供了两种核心数据结构(Series和DataFrame),以及一系列便捷的函数,能轻松处理表格型数据(类似Excel表格、数据库表)。pandas的核心价值在于“用简洁的代码实现复杂的数据处理”,它将数据分析从“繁琐的循环”中解放出来,让你专注于业务逻辑而非代码细节。
2025-10-30 20:45:34
1560
原创 Python异常处理详解:从概念到实战,让程序优雅应对错误
Python异常处理核心指南 异常是Python运行时发生的错误(如文件缺失、除数为零),与语法错误的本质区别在于其发生在程序执行阶段。Python提供了丰富的内置异常类型(如ZeroDivisionError、FileNotFoundError)覆盖常见错误场景。通过try-except结构可捕获异常:基础用法处理指定异常,多except块实现分场景处理,except Exception可捕获所有异常(慎用)。else块在无异常时执行,finally块确保资源释放。掌握异常处理能显著提升代码健壮性,建议针
2025-10-28 22:45:01
1043
2
原创 Python文件操作全解析:打开、关闭与读写实战
本文全面介绍了Python中文件操作的核心知识点,包括基本流程、打开模式、读写方法、CSV处理和路径管理。关键点包括:使用with语句安全操作文件,区分文本/二进制模式,选择合理的读写方法(如readline处理大文件),以及利用csv模块和os.path实现标准化处理。通过掌握这些技巧,开发者可以避免常见陷阱,编写出高效可靠的文件处理代码。
2025-10-28 22:11:25
1118
1
原创 Python OOP三大特性详解:继承、封装、多态
本文系统讲解了Python面向对象编程的三大特性:封装、继承和多态。封装通过私有属性与公有方法保护数据安全;继承实现代码复用与扩展,支持方法重写;多态则允许不同子类对同一方法呈现不同行为。文章通过学生管理系统的实例(如本科生、研究生类),展示了三大特性如何协同工作,提升代码的可维护性和扩展性。掌握这些特性有助于编写更优雅、灵活的Python代码。
2025-10-27 14:42:17
1073
2
原创 Python OOP基础概念详解:类、对象与封装
本文介绍了Python面向对象编程(OOP)的三大核心特性:封装、继承、多态,重点讲解了类和对象的概念及封装实现。类作为对象的抽象模板,包含属性和方法;对象是类的具体实例,通过__init__方法初始化。封装通过私有属性(__前缀)和保护方法(getter/setter)实现数据安全。文章以图书管理为例,展示了OOP的实际应用,包括创建Book类、管理借阅状态等。通过这三个维度的讲解,帮助初学者掌握Python OOP的基础知识。
2025-10-27 09:20:46
695
1
原创 Python模块(Module)详解:从基础使用到工程化实践
Python模块是代码组织与复用的核心机制,本质上是包含Python代码的.py文件。文章从模块定义、导入方式、搜索路径、包管理等方面全面解析了Python模块的使用。主要内容包括:1)模块的创建与多种导入方式;2)Python查找模块的搜索路径及自定义方法;3)通过包组织多个模块的方法;4)内置模块、第三方模块和自定义模块的分类及使用场景。掌握模块的使用能有效提高代码复用率,避免命名冲突,并实现工程化管理。
2025-10-26 22:29:18
1056
1
原创 Python函数定义与调用全解析:从基础语法到实战技巧
本文系统讲解Python函数的核心知识点,包括基础定义、参数类型、调用方式及高级特性。函数通过def关键字定义,支持位置参数、默认参数、关键字参数、可变位置参数(*args)和可变关键字参数(**kwargs),参数组合需遵循特定顺序。函数调用方式灵活,可直接调用、通过变量引用或作为参数传递。掌握这些技巧能有效提升代码复用性、模块化和可扩展性,帮助开发者编写更高效、清晰的Python代码。
2025-10-26 22:16:16
1203
原创 Python常用内置函数全解析:从基础到实战,一篇搞定
Python内置函数是开发中的高效工具,本文精选20+最常用函数分类解析。基础交互函数print()和input()处理输入输出;类型处理函数type()、isinstance()及转换函数实现灵活类型操作;序列操作函数len()、max()、sorted()等简化数据处理;迭代工具enumerate()、zip()等提升循环效率。掌握这些"开箱即用"的内置函数,能解决80%日常开发需求,显著提升代码质量与效率。
2025-10-24 18:39:05
957
1
原创 Python可迭代对象(Iterable)详解:从本质到实战应用
摘要:Python中的可迭代对象(Iterable)是支持for循环遍历的数据结构,通过__iter__()或__getitem__()实现。常见可迭代对象包括列表、字符串、字典等,而生成器和文件对象则具有惰性计算特性。可迭代对象通过迭代器(Iterator)实现元素逐个访问,两者关键区别在于迭代器只能遍历一次。实际应用中,合理选择可迭代对象类型(如生成器处理大数据)并结合itertools工具能显著提升代码效率和内存利用率。理解这些概念有助于编写更高效、可读性更强的Python代码。
2025-10-24 18:38:08
1139
原创 Python可变对象 vs 不可变对象:从底层原理到实战避坑指南
本文深入解析Python中可变对象与不可变对象的区别。不可变对象(如int、str、tuple)创建后无法修改值,只能新建对象;可变对象(如list、dict、set)可直接修改内部数据且内存地址不变。文章从定义、底层原理(内存存储机制与缓存优化)、核心差异(变量赋值、函数传参、线程安全)三个维度展开,通过代码示例对比了两类对象在赋值逻辑、函数传参行为和使用场景上的关键区别,帮助开发者避免因概念混淆导致的常见错误。
2025-10-23 18:41:08
1507
1
原创 Python集合(set)详解:从去重到高性能查找的实战指南
Python集合是一种无序、不重复元素的数据结构,基于哈希表实现,具有高效的查找、去重和集合运算能力。本文从四个维度系统讲解集合的使用:1)核心特性包括无序性、唯一性和元素不可变性;2)基础操作如创建、增删查,其中成员判断效率远超列表;3)高级用法支持数学集合运算(交集、并集等);4)集合推导式可高效生成集合。相比列表和字典,集合在去重、成员判断和集合运算场景中优势显著,适合处理唯一性数据需求。
2025-10-23 18:00:28
1496
原创 Python字典(dict)全方位解析:从基础用法到高级实战优化
本文深入解析Python字典的底层原理与高效使用技巧。字典作为基于哈希表的键值对结构,具有O(1)查找效率,键必须为不可变类型。文章从四个维度展开:1)底层哈希表原理,揭示字典高效查找机制;2)基础增删改查操作,对比不同方法差异;3)高级特性如字典推导式、嵌套结构;4)实战优化技巧。重点讲解了get()方法、update()批量操作、pop()删除等核心用法,并通过示例展示如何避免常见错误。掌握这些知识能显著提升字典使用效率,解决实际开发中的数据映射问题。
2025-10-22 18:59:30
1053
1
原创 Python字符串(str)深化指南:从底层原理到高级实战技巧
摘要:Python字符串是Unicode字符的不可变序列,支持多语言字符。本文从底层原理到高级操作,全面解析字符串特性。包括不可变性与Unicode编码、字符串与字节串的转换、基础操作(切片、拼接、判断)、高级操作(替换、分割、格式化)。重点推荐使用join()拼接字符串和f-string格式化,并提供了实用示例和性能优化建议,帮助开发者高效处理复杂字符串场景。
2025-10-22 08:37:08
1130
原创 Python元组(Tuple)详解:从基础特性到实战避坑
元组是Python中一种有序、不可变、可重复的数据集合,用圆括号()表示(元素间用逗号分隔)。# 基本元组# 单元素元组(注意必须加逗号,否则会被识别为普通变量)single_tuple = (100,) # 正确:元组not_tuple = (100) # 错误:本质是整数100# 多类型元素元组(支持混合类型,与列表一致)# 嵌套元组元组的核心特性有序性:元素按插入顺序排列,支持索引访问(同列表);不可变性:一旦创建,元素的个数、值、顺序都不能修改(区别于列表的核心点);轻量性。
2025-10-21 18:21:16
726
原创 Python列表(List)完全指南:从入门到实战优化
列表是Python中的有序、可变、可重复的数据集合,用方括号[]表示,元素之间用逗号分隔。# 空列表# 包含不同类型元素的列表(Python列表支持多类型元素)# 同类型元素列表(更常见于数据处理场景)本文从列表的定义、基础操作(增删改查)、内置方法、实战场景到坑点优化,全面覆盖了Python列表的核心知识点。列表作为Python最基础的数据结构,是后续学习字典、元组、集合等的基础,建议多动手练习,熟练掌握其用法。
2025-10-21 18:10:03
1061
原创 Python基础语法规范详解:缩进、注释与代码可读性
Python语法规范是代码正确运行和团队协作的基础。其独特之处在于通过缩进(4个空格)而非大括号来划分代码块,要求严格一致以避免IndentationError。注释需简洁明确,单行用#,多行用""",关键逻辑必须说明。提升可读性的方法包括:变量/函数使用snake_case命名、常量全大写、控制行长度(≤79字符)、用空行分隔逻辑块。常见错误如缩进不一致、注释嵌套冲突等可通过IDE工具避免。遵循PEP 8规范能写出更优雅、易维护的Python代码。
2025-10-20 19:30:29
1281
原创 Flocke 算法(Algorithm 954)求解一元三次方程详解
Flocke算法(Algorithm 954)是一种高效稳定的一元三次方程数值解法,通过消去二次项将方程转化为约简形式,利用判别式判断根的类型(1实根+2共轭复根或3实根),并分别采用实数域公式或三角函数法求解。相比传统解析解法,该算法避免了复数运算和精度损失,通过预处理和误差控制确保计算稳定性。工程实现需注意数值范围、判别式精度及三角函数边界处理。实例验证表明,算法能准确求解各类三次方程,为工程应用提供了可靠的数值计算方案。
2025-10-20 18:56:37
1824
原创 Python流程控制全解析:条件判断与循环语句详解
本文系统介绍了Python中的流程控制语句。主要内容包括:1) 条件判断结构(if-elif-else)及其嵌套使用;2) 循环结构(for循环遍历序列/字典,while循环及避免死循环);3) 循环控制语句(break跳出循环,continue跳过当前循环);4) 循环中的else子句应用。通过示例代码详细展示了各语句的语法和使用场景,并提供一个综合性的猜数字游戏示例。掌握这些流程控制语句是Python编程的基础,能有效实现复杂逻辑。文章强调实践练习的重要性,以加深对概念的理解和应用能力。
2025-09-16 08:56:56
890
6
原创 Python输入输出全解析:从print()到input(),新手也能轻松掌握
本文详细介绍了Python输入输出的核心功能:print()函数支持多参数输出和格式化(推荐f-string),以及input()函数接收用户输入并需手动类型转换。通过实例演示了如何结合使用这两个基础函数,并强调了异常处理的重要性。适合新手快速掌握Python基础交互操作,为后续开发打下坚实基础。
2025-09-16 08:29:04
1474
1
原创 Python运算符详解:从基础到实战,一篇搞定所有常用运算符
本文详细解析Python四大类运算符的用法与常见问题:算术运算符(如+、//、%等)处理数值计算,需注意/与//的区别;比较运算符(如==、>等)用于条件判断,强调==与=的区别;逻辑运算符(and、or、not)组合布尔值,具有短路求值特性;赋值运算符(=及复合形式如+=)实现变量赋值。文章通过代码示例和注意事项,帮助开发者掌握运算符的核心用法与易错点。
2025-09-15 22:04:09
2690
2
原创 Python变量与数据类型全解析:从命名规则到类型转换
本文介绍了Python编程中的变量与数据类型基础。主要内容包括: 变量:作为数据的容器,需遵循命名规则(字母/数字/下划线,首字符非数字,避开关键字),推荐使用蛇形或驼峰命名法。 三大数据类型: 数值型(int/float/bool):处理整数、小数和布尔值 字符串(str):用引号定义文本,支持转义字符和基本操作 类型转换:int()、float()、str()函数的使用场景和注意事项 实战应用:通过变量存储不同数据类型的数据,并实现类型转换来解决实际问题。 这些基础概念是Python编程的核心,掌握它们
2025-09-15 21:22:11
1340
1
原创 智能合约的密码学基石:从代码完整性到访问控制的安全保障
代码完整性:Keccak-256哈希将合约代码固化在区块链上,任何篡改都会被全网拒绝,确保“写一次,可信执行”;访问控制:基于ECDSA的签名验证机制,通过msg.sender和角色映射精确控制函数调用权限,防止未授权操作。随着智能合约应用场景的拓展(从金融到政务、供应链),密码学技术也在不断演进——从抗量子签名到零知识证明的集成,未来的智能合约将拥有更强大的安全基础。对于开发者而言,深入理解这些密码学原理,不仅是写出安全合约的前提,更是应对复杂攻击的关键。参考资料。
2025-08-13 08:22:28
1070
4
原创 比特币的密码学基础:从地址到共识的底层保障
地址生成:通过SHA-256+RIPEMD-160的双重哈希,在保护隐私的同时提供安全的转账标识;交易签名:基于secp256k1曲线的ECDSA算法,确保只有私钥持有者能转移资产,防止伪造;工作量证明:利用SHA-256的哈希计算,构建去中心化的共识机制,保证账本不可篡改。这些技术并非比特币独创,但比特币将它们整合为一个自洽的系统,首次实现了“无需信任中介的价值转移”。理解比特币的密码学基础,不仅能帮助我们更深入地认识区块链技术,也能为其他去中心化应用的设计提供借鉴。
2025-08-13 08:17:10
1452
2
原创 多因素认证(MFA)详解:从密码到硬件令牌的安全升级
MFA的安全基础是**"多因素"的组合**,即要求用户提供来自至少两个不同类别(因素)的凭证。多因素认证通过组合"知识+拥有+生物"因素,从根本上提升了身份认证的安全性,是抵御密码泄露、钓鱼和暴力攻击的有效手段。从硬件令牌的强安全,到TOTP APP的低成本,再到推送认证的易用性,MFA方案已形成完整的产品矩阵,可满足不同场景的需求。对于开发者而言,集成MFA不应是"可选项",而应是用户账户安全的"标配"。随着网络攻击手段的演进,单一密码的防护早已不堪一击。
2025-08-12 07:51:01
1630
原创 数据库加密技术详解:从透明加密到字段级防护
数据库加密是保护敏感数据安全的关键技术,主要分为透明数据加密(TDE)和字段级加密两种方案。TDE针对数据库物理文件整体加密,对应用透明,支持主流数据库如SQL Server、Oracle和MySQL企业版,但存在粒度粗、内存数据明文等不足。字段级加密则针对特定敏感字段,通过应用层或数据库内置函数实现细粒度保护,但需修改应用代码且影响查询功能。两种方案各有利弊,需根据安全需求和系统架构选择合适方案,构建多层次的数据库防护体系。
2025-08-12 07:43:22
2379
1
原创 磁盘加密技术详解:从全磁盘到文件级的安全防护
本文系统介绍了磁盘加密技术的两种主要类型:全磁盘加密(FDE)和文件级加密。FDE通过对整个磁盘分区进行加密(如Windows的BitLocker和macOS的FileVault),提供全面的数据防护;文件级加密(如EFS)则针对单个文件或文件夹,提供更精细的权限控制。文章详细对比了两者的优缺点,指出FDE适合设备整体防护,文件级加密更适合特定文件保护。最后强调,无论采用哪种方式,都需结合对称加密、非对称加密和密钥管理技术,根据实际需求选择最合适的加密方案,以应对日益增长的数据安全威胁。
2025-08-11 11:07:23
1187
原创 网络通信安全:HTTPS协议的密码学基石
HTTPS通过TLS/SSL协议融合多种密码学技术,解决了HTTP明文传输的三大安全隐患。其核心流程包括:1)握手阶段通过非对称加密(ECDHE/RSA)安全交换对称密钥,支持前向保密;2)会话阶段使用高效对称加密(AES-GCM/ChaCha20)传输数据;3)通过HMAC或认证加密确保数据完整性;4)基于CA证书链机制验证服务器身份。Python代码示例演示了证书验证过程,若禁用验证将导致中间人攻击风险。HTTPS最终实现机密性、完整性和真实性的三重保障,成为现代网络安全通信的基础。
2025-08-11 08:31:42
1006
原创 密码学安全模型(Security Model):用形式化框架定义“安全“
密码学安全模型是评估加密算法安全性的形式化框架,通过定义攻击者的能力、目标和安全标准来精确衡量算法防护能力。核心模型包括IND-CPA(选择明文攻击)、IND-CCA1(非适应性选择密文攻击)和最强的IND-CCA2(适应性选择密文攻击),其强度依次递增。这些模型通过"挑战者-攻击者"交互游戏来定义,并采用归约技术将算法安全性归约到数学难题的困难性上证明。实际应用中需根据场景选择合适的安全模型,低风险场景可使用IND-CPA,而高安全需求必须采用IND-CCA2。理解安全模型对算法设计、
2025-08-08 08:42:23
1208
2
原创 密码学中间人攻击(Man-in-the-Middle):隐藏在通信链中的“窃听者“
在网络通信安全中,中间人攻击(Man-in-the-Middle Attack, MITM)是一种极具隐蔽性的攻击手段。攻击者无需破解加密算法,只需悄无声息地插入通信双方之间,伪装成"中转站",即可拦截、篡改甚至伪造信息。这种攻击的核心在于破坏通信双方的身份认证机制——当接收方无法确认发送者的真实身份时,攻击者就能轻松冒充一方或双方,实现"鱼目混珠"。本文将深入解析中间人攻击的原理、实施流程、典型案例及防御策略,揭示这类攻击的隐蔽性与危害性,帮助开发者在系统设计中构建有效的抗MITM防线。中间人攻击的本质是
2025-08-08 08:09:31
1047
1
原创 密码学侧信道攻击(Side-channel Attack):从物理泄露中窃取密钥
摘要:侧信道攻击(SCA)通过分析加密设备运行时泄露的物理信息(如功耗、时间、电磁辐射等)还原密钥,突破了传统密码学仅关注数学安全的局限。主要攻击类型包括功耗分析(SPA/DPA)、时间攻击、电磁分析和故障注入,其中DPA通过统计方法可从噪声中提取密钥。防御策略涵盖算法层(恒定时间实现、随机化)和硬件层(电磁屏蔽、防故障设计)。尽管防护技术不断进步,但攻击手段(如深度学习融合)也在升级,凸显了密码系统需同时保障数学与工程安全的重要性。开发者应优先使用抗SCA的加密库,并避免实现中的物理信息泄露点。
2025-08-07 18:10:02
1723
原创 密码学中的穷举攻击(Brute-force Attack):从原理到防御
本文深入解析了穷举攻击(Brute-force Attack)的原理及防御策略。穷举攻击通过系统尝试所有可能的密钥来破解加密数据,其成功率与密钥长度密切相关。128位密钥在当前计算能力下已足够安全(破解需540亿年),而量子计算可能将安全性降低一半。防御措施包括:使用128位以上密钥、确保密钥随机性、限制尝试次数、定期轮换密钥。文章通过DES和WEP等案例说明,密钥长度必须随技术进步而增加,且实现方式同样重要。开发者应理解密钥长度与安全性的关系,从源头构建坚固的防御体系。
2025-08-07 15:47:13
1296
2
字模软件 PCtoLCD2002完美版
2025-07-06
中文编码查询工具(ASCII、Unicode(包括 UTF - 8、UTF - 16 等)、GB2312、GBK、BIG5 等主流编码标准)
2025-07-06
【自然语言处理】去AI味的提示指令词模板:提升论文写作质量与学术规范性
2025-06-26
【嵌入式系统】STM32平台PS2手柄控制智能小车实验:硬件连接与数据通信协议解析
2025-06-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅