题目描述
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
输入格式
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
输出
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
样例输入
3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100
样例输出
3
?
解题思路:
可以使用并查集算法来结题,注意的是需要考虑无法通路的情况。
参考程序:
<span style="font-size:18px;">#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=105,M=10000;
struct road{
int a,b,c;
};
road a[N];
int father[M];
int f(int x){
int r=x,k;
while (father[r]!=r)
r=father[r];
while (father[x]!=x)
{
k=father[x];
father[x]=r;
x=k;
}
return r;
}
void init(int x){
for (int i=1;i<=x;i++) father[i]=i;
}
bool comp(road x,road y){
return x.c<y.c;
}
int main()
{
int n,m;
while(scanf("%d %d",&n,&m)&&n!=0)//m代表村庄数,n代表路的条数
{
int ans(0);
init(m);
for (int i=0;i<n;i++) scanf("%d %d %d",&a[i].a,&a[i].b,&a[i].c);
sort(a,a+n,comp);
for (int i=0;i<n;i++){
int k1=f(a[i].a),k2=f(a[i].b);
if (f(a[i].a)!=f(a[i].b)){
father[k1]=father[a[i].a]=father[a[i].b]=k2;
ans+=a[i].c;
}
}
int judge=f(1);
for (int i=1;i<=m;i++)//判断是否通路
{
if (judge==f(i)&&i==m) {
printf("%d\n",ans);
break;
}
if (i==m){
printf("?\n");
break;
}
}
}
return 0;
}</span>