- 博客(80)
- 收藏
- 关注
原创 情感分析术语的定义及解释
本文系统梳理了自然语言处理领域情感分析的核心术语,构建了包含算法模型、评估指标、数据处理、技术特征等七大维度的知识体系。详细阐述了从传统机器学习方法(如逻辑回归、SVM)到深度学习模型(如BERT、LSTM)的算法特点及应用场景,介绍了准确率、F1分数等评估指标的计算逻辑,并深入探讨了数据预处理、模型优化等关键技术环节。同时涵盖了情感分析任务拓展场景,如方面级情感分析和跨语言应用。该术语体系为相关研究和实践提供了全面的概念指引,有助于高效推进情感分析工作的开展。
2025-11-07 09:37:17
467
原创 人工智能研究方向
人工智能研究围绕"理论-技术-系统-数据-应用"逻辑链形成五大方向:1)基础理论与算法,包括机器学习、深度学习等核心算法;2)感知与交互技术,涵盖计算机视觉、自然语言处理等;3)决策与控制系统,涉及机器人控制、多智能体协同等;4)数据分析与知识工程,包含数据挖掘、知识图谱构建;5)应用与交叉学科,如医疗、金融等领域的AI应用及脑机接口等交叉研究。该体系既体现各方向独立性,又保持内在联系,为AI研究提供系统性框架。
2025-10-24 08:59:18
424
原创 自然语言处理(NLP)—发展历程(背景、技术、优缺点、未来方向)
自然语言处理(NLP)是人工智能领域的重要分支,旨在让计算机理解、生成和交互人类语言。其发展经历了规则驱动、统计学习和深度学习三大阶段,核心技术包括文本预处理、特征表示、序列建模等。当前NLP已广泛应用于智能客服、机器翻译、情感分析等领域,但仍面临语义复杂性、数据依赖和可解释性等挑战。未来发展方向包括多模态融合、跨语言处理、低资源学习和行业深度融合,将进一步推动人机交互智能化。
2025-10-23 10:20:06
978
原创 深度学习经典分类(算法分析与案例)
本文系统梳理了深度学习的四大模型架构:前馈神经网络(FNN)作为基础架构处理结构化数据;卷积神经网络(CNN)专精于空间特征提取,在图像识别等领域表现突出;循环神经网络(RNN)及其变体(LSTM、GRU)擅长序列数据处理;生成模型(GAN、VAE等)开创了创造性数据生成的新范式。文章详细解析了各类模型的核心机制、发展历程和典型应用,并指出未来将向多模态融合、轻量化和可解释性方向发展。这些模型共同构成了深度学习的完整技术生态,推动着人工智能各领域的突破性进展。
2025-10-19 16:24:52
904
原创 机器学习十大经典算法解析与对比
机器学习十大经典算法应用指南 本文系统梳理了机器学习领域十大核心算法,涵盖监督学习(线性回归、逻辑回归、KNN、SVM、决策树、随机森林、朴素贝叶斯、GBDT、XGBoost)与无监督学习(K-Means)。每种算法均从定义原理、典型案例、优劣势三个维度进行解析,并建立对比矩阵。回归任务推荐线性回归/GBDT,分类任务优选逻辑回归/随机森林,无监督场景适用K均值/SVM。选择策略需综合考虑数据特性(维度、线性度、样本量)和任务目标(精度、解释性、计算效率),建议通过交叉验证优化参数配置。实际应用中,简单场景
2025-10-17 10:36:23
959
原创 机器学习四范式(有监督、无监督、强化学习、半监督学习)
本文系统梳理了机器学习的四大范式:监督学习基于标注数据训练模型,适用于分类/回归等任务,但标注成本高;无监督学习从无标签数据中挖掘模式,成本低但结果解释性弱;强化学习通过环境交互优化决策策略,适合动态场景但训练耗时长;半监督学习结合少量标注与大量无标签数据,在标注稀缺场景优势显著。四类方法各具特点,需根据数据特征、业务目标和成本约束灵活选择,方能最大化AI应用价值。
2025-10-15 21:36:12
1676
1
原创 Typora提示This beta version of Typora is expired, please download and install a newer version
Typora是一款深受用户喜欢的一款Markdown文本编辑器,他免费而且还简单实用,所以很多人使用它,本文就是解决Typora其中的一个报错情况?定义:一款支持实时预览的Markdown文本编辑器,有OS X、Windows、Linux三个平台的版本。它使用的是Markdown语法,扩展了任务列表、表格、表情符号、数字公式、代码高亮等常用功能。
2024-04-16 15:45:37
1562
原创 RNN循环神经网络
本文主要借鉴:mooc曹健老师的《人工智能实践:Tensorflow笔记》RNN 是最简单的循环神经网络,它的优点是结构简单,易于实现,但是也有缺点,比如梯度消失或爆炸、难以处理长期依赖等。LSTM 是一种改进的 RNN,它的优点是能够避免梯度消失和长期依赖问题,学习更长的序列,但是也有缺点,比如参数较多,计算复杂度高。GRU 是一种简化的 LSTM,它的优点是参数较少,计算速度快,但是也有缺点,比如表达能力可能不如 LSTM 强。
2023-08-30 12:00:00
497
原创 经典卷积网络
本文主要借鉴:mooc曹建老师的《人工智能实践:Tensorflow笔记》每一个网络都是在增加层或者改变卷积核的大小,损失函数,优化器等等目的都是为了反向传播的时候和特征提取的时候更加精准有效ResNet还需还有ResNet-50等等。
2023-08-29 12:00:00
397
原创 卷积神经网络
卷积就是特征提取器,就是CBAPD认识:卷积就是Sequential内部的操作,对特征进行提取,提醒:CBAPD不一定要求全部都有。C Conv2D(filters=6, kernel_size=(5, 5), padding='same'), # 卷积层B BatchNormalization(), # BN层A Activation('relu'), # 激活层P MaxPool2D(pool_size=(2, 2), strides=2, padding='same'), # 池化层。
2023-08-28 12:00:00
447
1
原创 Tensorflow2.0搭建网络八股扩展
本文主要借鉴:mooc曹健老师的《人工智能实践:Tensorflow笔记》可以利用这几种方式将八股神经网络进行优化应用到我们想要的场景中可差分的神经网络体系方便我们使用。
2023-08-27 12:00:00
344
原创 Tensorflow2.0搭建网络八股
本文主要借鉴:mooc曹建老师的《人工智能实践:Tensorflow笔记》第一个神经网络的搭建,利用tensorflow2.0提醒:跑数据的时候经理用一个空电脑,不然跑不动,内存不够,电脑会坏掉六步法牢记心中,每个网络都是这么搭建的,目前大家都是稍做了修改。
2023-08-26 12:00:00
289
原创 前向传播与反向传播涉及到的知识点
目的:比如买东西,货多买的少,那成本就高,货少买的多,那么利润就少,但是利润!=成本乘一下权重就可以了本文主要借鉴:mooc曹建老师的《人工智能实践:Tensorflow笔记》正向传播:激活函数反向传播:损失函数、优化器欠拟合和过拟合:利用正则化来环节深度学习过程:前向传播,损失函数,优化器,反向传播更新w和b。
2023-08-25 16:12:47
331
原创 人工智能浅浅的入门
格局前面所讲的:前向传播和反向传播如何更新待优化的参数,借助损失函数和梯度下降和学习率等等观点来进行优化。效果:损失函数可以定量判断W、b的优劣,当损失函数输出最小时,参数W、b 会出现最优值。损失函数(loss function):预测值(y)与标准答案(y_)的差距。:沿损失函数梯度下降的方向,寻找损失函数的最小值,得到最优参数的方法。从后向前,逐层求损失函数对每层神经元参数 的偏导数,迭代更新所有参数。来实现的,通过采集大量的数据特征和标签,送入函数。loss:损失函数的图像,损失函数越小越好。
2023-08-25 11:57:50
288
原创 微信小程序:函数节流与函数防抖
节流: n 秒内只运行一次,若在 n 秒内重复触发,只有一次生效防抖: n 秒后在执行该事件,若在 n 秒内被重复触发,则重新计时函数节流与函数防抖节约计算机资源,提升用户体验节流一般是用在必须执行这个动作,但是不能够执行太频繁的情况下防抖一般是用来,用户输入有操作时,暂时不执行动作,等待没有新操作时,进行相应响应函数防抖与节流都可以解决频繁使用计算机资源的问题。
2023-08-15 21:26:59
2734
原创 >>>和<<<运算符
第一步:先将8转换为2进制(格式为8位)---------------------------------------结果:00001000。第一步:先将8转换为2进制(格式为8位)---------------------------------------结果:00001000。第二步:向左移动相应的位数(格式为8位,不够0来补)--------------------结果:00100000。注意点:如果移动0位,及意思为将该数据类型转换为数字,最终还是转为原来的进制。注意点:最终还是转为原来的进制。
2023-08-13 11:42:37
929
原创 微信小程序页面交互
js获取前端账号和密码时,需要设置唯一表示符号:id微信提示功能: wx.showToast({ title: '登陆成功',});可以没有icon页面交互与后端请求需要使用json和js的相互转换本地存储StorageSync和Storage都很重要页面交互的时候,看一下怎样跳转,使用什么跳转函数合适。
2023-08-13 09:24:24
392
原创 L1-6 打PTA
输入第一行给出一个整型范围内的正整数 N,随后 N 行,每行给出一个长度不超过 80 的字符串,为用户输入的句子,由英文字母、数字、空格和标点符号组成,以回车结束。传说这是集美大学的学生对话。本题要求你做一个简单的自动问答机,对任何一个问句,只要其中包含。对每一行句子,如果其结尾字符为问号。如果不是问号结尾,则敷衍地回答。如果有则在一行中输出。
2023-06-22 09:48:47
1670
原创 Linux中将Python2升到Python3
由于系统已经安装了python2的版本,因此这里在bin下的启动程序还是python2的,这里我们需要把老版本做个移置更名作为备份,否则直接命令行执行python,打开的还是老版本。这里我们并没有删除python2,而是留在这里作为备用,如果输入python2就可以切换到python2。安装目录:./configure --prefix=/usr/local/python3。现在,如果我们直接输入python,默认打开的就是python3。下,这样默认直接打开python就会指向新安装的python3了。
2023-04-19 19:06:38
2098
原创 MyBatisX插件
MyBatisX插件在开发的过程中非常的遍历与快捷MyBatisX插件可以快速的编写相应CRUD代码MyBatisX插件告诉我们更要键名实意MyBatisX插件告诉我们约定大于配置。
2023-03-09 16:13:46
1416
原创 Mybatis-Plus分页插件
/结构必须保持一致整体遵循约定大于配置按照给定的结构编写,不会报错,否则无法实现相关功能Mybatis-Plus分页插件大大降低的开发难度Mybatis-Plus分页插件在企业开发应用更多。
2023-03-08 11:51:23
3310
原创 MyBatisPlus中的条件构造器Wrapper
Wrapper的提出很好的解决了模糊查询Wrapper条件构造器解决了大部分单表操作的数据用于更新操作QueryWrapper用于删除和查询操作。
2023-03-07 21:09:23
2498
原创 分布式中雪花算法
随着用户量的增加,数据信息的迭代,导致空间不足的,所以我必须想办法解决水平和垂直分表可以解决问题,但都有缺点雪花算法可以更好解决分表带来的问题,并且有规律的展现大厂现在都用雪花算法生成ID。
2023-03-06 12:41:52
647
原创 MyBatis-Plus常用注解
注解的方式更有利于我们开发的便捷@TableName和@TableId的注解解决了80%的问题mybatis-plus升级并且简化的开发。
2023-03-05 22:09:58
1646
原创 MyBatis-Plus
简介:MyBatis-Plus(简称 MP)是一个 MyBatis的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生。支持数据库:MySQL,Oracle,DB2,H2,HSQL,SQLite,PostgreSQL,SQLServer。内置分页插件:基于 MyBatis 物理分页,开发者无需关心具体操作,配置好插件之后,写分页等。损耗小,启动即会自动注入CURD,性能基本无损耗,直接面向对象操作。特点:自己内部就实现了对单表的CRUD,实现了最基本的功能。
2023-03-05 17:24:56
2632
原创 JSON数据交互方式
json是一种轻量级的数据交换格式json可读性很高,网络传输速录很快完全独立与编程语言,什么语言都可以识别json的语法格式一定要会,比如在写接口文档的时候就离不开json
2022-12-09 17:56:45
2075
原创 基于数据库的简单介绍
数据库应用程序:在很多情况下,DBMS(data base manager system)无法满足用户对数据库的管理,此时,就需要使用数据应用程序与DBMS进行通信.访问和管理DBMS中存储的数据数据库的基本知识是每一个程序员应该了解的数据库的三级模式和二级映射是核心任何程序都离不开数据库的设计数据库的发展促进了时代的进步总之数据库很重要。
2022-11-20 21:14:38
362
原创 基于MySQL视图
视图都是由基本表进行映射而得来的视图的里面的数据就是基本里表里面的数据当对视图进行CRUD的时候,也就是对基本进行CRUD的时候视图的产生、实现了权限的分配,在一定程度上保护了基本表。
2022-11-17 20:32:30
548
原创 基于MySQL的事务管理
事务更有助于任务的执行不被打搅事务保证的任务执行的完整性、准确性lock的应用,虽然很好,保证了事务不被打搅,但是浪费时间。概念:多条语句组成一个执行单位事务的基本操作MySQL中的事务必须满足A,C,I,D这四个基本特性事务操作举例——(转账)事务保存点——SAVEPOINT事务隔离级别——多线程(并发同时访问)
2022-11-16 11:36:40
374
原创 Ajax与Axios的区别
ajax提供了最原生的方法,但是现在都不用它了,有种教会徒弟饿死师傅的感觉axios更好的实现了异步请求。1.Ajax与Axios的区别2.mvvm模式下更适合这种数据3.ajax书写形式4.axios书写形式5.vue 中使用的 axios 代码
2022-11-03 20:01:20
4088
2
原创 本二学生对计算机科学与技术的理解
计算机科学与技术这门专业真的是不看院校的,就看你的代码能力,自己看你是否肯花心思在这上面。作为一名身在一线城市的本二学生,初来大学怀着一颗改变世界,挣大钱,改变命运的心,但是慢慢的感受到,这不是很简单的事情。了解到这个社会是看学历的,看你是不是985是不是211是不是双一流,还是曾经踩着你爬上去的人挡在你面前,比如师范类,很看重是不是高校毕业,理工科学生稍微好一点,但是有一点,理工类的学校,差一点的很多实验室,先进设备都没有,没办法让本学校的学生提升自己的本领,见世面达不到思维就被限制。但是,这个社
2022-10-28 13:16:25
641
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅