手把手教你申请免费SSL证书:图文版教程

如何为你的网站申请免费 SSL 证书:完整指南

在当今数字化时代,网络安全至关重要。全球已有超过 85% 的网站默认采用 HTTPS 协议,SSL 证书不再是一种可选的附加组件,而是网站基础设施的必备要素。它不仅关乎安全,更是提升用户体验、增强商业信誉的关键所在。

以下是网站申请 SSL 证书的几大核心原因:

1. 数据加密:守护用户隐私

SSL/TLS 协议在用户浏览器与服务器之间搭建起一条加密的“秘密通道”。无论是用户输入的密码、银行卡号,还是其他敏感信息,都能在传输过程中得到加密保护,有效防止黑客窃取。

2. 身份认证:建立信任桥梁

正规的证书颁发机构(CA)会对网站主体进行严格的身份验证。一旦通过验证,网站将获得 SSL 证书,浏览器地址栏会显示企业名称(对于 EV 证书),这有助于增强用户的信任感,让用户放心浏览和交易。

3. 提升 SEO 排名:搜索引擎更青睐

谷歌、百度等主流搜索引擎都将 HTTPS 作为重要的排名因素。启用 SSL 证书的网站在搜索结果中往往更具优势,能够获得更高的曝光率和点击率。

4. 消除浏览器警告:提升用户体验

未安装 SSL 证书的网站,现代浏览器(如 Chrome)会标记为“不安全”,这会让用户望而却步。而 HTTPS 网站则会显示绿色锁标志,让用户感受到安全与信任。

5. 满足合规要求:规避法律风险

支付卡行业(PCI DSS)、GDPR 等法规明确要求网站必须通过 HTTPS 传输用户数据。如果网站未遵守这些规定,可能会面临严重的法律后果。

6. 支持新技术:提升网站性能

现代的性能优化技术(如 HTTP/2、QUIC 协议)通常要求网站必须启用 HTTPS 才能使用。这些技术能够显著提升网站的加载速度,为用户提供更流畅的体验。

现在,让我们以将盾 CDN 平台为例,详细了解一下如何申请 ZeroSSL 和 Let’s Encrypt SSL 证书。

步骤一:登录控制端

登录到将盾 CDN平台,选择你想要配置 SSL 证书的站点,点击站点列表。 www.1k4.cn

步骤二:选择或创建订单

如果你已经有订单,可以直接选择;如果没有,可以购买一个 1 元按量付费套餐。然后在加速域名中输入你想要申请 SSL 证书的域名。

步骤三:配置域名解析

查看域名的 CNAME 记录,并在域名服务商处进行解析设置,将 CNAME 对应值填写正确。

注意:在域名解析设置中,类型选择 CNAME,完成后点击保存。

步骤四:开启 HTTPS 访问

在证书设置中,开启 HTTPS 访问,然后点击证书申请按钮。

步骤五:选择证书供应商

在证书申请页面,选择一个供应商(如 ZeroSSL 或 Let’s Encrypt),然后点击申请按钮。

证书预计申请时间在 5 - 20 分钟内,具体时间可能因供应商和网络状况而有所不同。

步骤六:查看申请结果

证书申请完成后,你可以在证书管理页面查看申请结果。通常情况下,整个申请过程预计只需 30 秒左右。

通过以上步骤,你就可以轻松为你的网站申请到免费的 SSL 证书,提升网站的安全性和用户体验。

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值