机器学习基本概念1

梯度

该方向上升最大的方向

梯度下降法

原因
  • 并不是所有的矩阵都有逆
  • 计算量会很大

梯度下降法更新参数

沿着负梯度的方向 下降

Θ1=Θ1αdJ(Θ))dΘ1 Θ 1 = Θ 1 − α d J ( Θ ) ) d Θ 1

凸函数

曲线上两点连线 这个连线中间的线段上的点在曲线上方 就是凸函数
这里写图片描述

过拟合

  • 如果有很多特征的模型,很复杂模型,我们的假设函数可以对原始数据拟合的很好,但是丧失了一般性,拿来新的样本点后,预测效果差。
  • 所有的模型都可能存在过拟合的风险:
    • 更多的参数,更复杂模型
    • 眼见不一定为实,看到的数据并不一定是全部的真是数据分布

正则化

正则化很多方法,下面先介绍其中之一

  • 控制参数幅度,控制住参数的搜索空间,加以约束
  • 损失函数
    J(Θ)=12mi=1m(hΘ(x(i)y(i)))2 J ( Θ ) = 1 2 m ∑ i = 1 m ( h Θ ( x ( i ) − y ( i ) ) ) 2

    • 加入了正则化项后是这样的
      J(Θ)=12mi=1m(hΘ(x(i)y(i)))2+λj=1nΘ2j J ( Θ ) = 1 2 m ∑ i = 1 m ( h Θ ( x ( i ) − y ( i ) ) ) 2 + λ ∑ j = 1 n Θ j 2

      其中
      λ λ
      不能太大也不能太小

-L1正则化使用绝对值
-L2正则化使用平方项,如上公式即使用L2正则化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值