- 博客(175)
- 资源 (119)
- 收藏
- 关注
原创 【DeepSeek R1构建本地RAG知识库】企业级 RAG 系统落地与性能调优实战指南
本文系统介绍了RAG(检索增强生成)技术的优化方法,围绕检索器、索引分块和生成器三大核心模块,提出了提升检索精度和生成质量的关键策略。在检索环节,建议采用混合检索模式、分级检索机制和查询重构优化;在知识组织方面,强调语义化分块和元数据索引的重要性;生成环节则注重Prompt设计、答案后处理和幻觉控制。文章还分享了系统工程实践、评估体系建立以及前沿技术方向,为企业落地RAG提供了从基础优化到进阶创新的完整解决方案。通过全流程优化,可有效解决"检索不准、生成不稳"等核心问题,实现RAG系统从
2025-11-19 15:05:27
117
原创 MAC安装vue环境(homebrew、nvm、nodejs、npm、vue、axios等)
本文详细介绍了在macOS系统下搭建前端开发环境的完整流程。首先通过安装Homebrew(Mac包管理工具),然后使用Homebrew安装nvm(Node版本管理工具),并配置环境变量使其生效。接着讲解了nvm的常用命令,包括查看、安装、切换Node版本等功能。最后演示了如何使用nvm安装指定版本的Node.js(以24.10.0为例)并验证安装结果。整个过程包含详细命令和配置说明,帮助开发者快速建立稳定高效的前端开发环境,实现Node.js多版本的自由切换。
2025-10-28 15:21:15
891
原创 苹果电脑mac抖音直播伴侣直播
摘要: 本文为Mac用户提供了一套完整的抖音直播解决方案。由于抖音直播伴侣仅支持Windows系统,作者建议通过Parallels Desktop虚拟机搭建Windows环境,并配合OBS Studio实现专业直播。具体步骤包括:1)下载必备软件(OBS、抖音直播伴侣、Parallels Desktop);2)在虚拟机中安装抖音直播伴侣;3)使用Wireshark抓取直播推流码;4)在OBS中配置服务器地址和推流码,最终实现高清推流。该方法成功绕过了Mac设备的限制,为主播提供了多窗口操作和专业控制体验。文
2025-10-21 14:01:24
7334
1
原创 OBS参数设置优化调节
OBS参数优化指南:从基础设置到进阶技巧,解决直播/录屏中的卡顿、画质模糊等问题。文章详细讲解麦克风音量调节、增益设置等音频优化方法,帮助用户平衡画质与性能。适合新手和进阶用户,通过参数调整让OBS从"能用"升级为"好用"。包含图文操作指引,提升直播稳定性和录屏清晰度。
2025-09-28 10:41:18
1008
原创 【DeepSeek R1构建本地RAG知识库】 企业落地的22种常用分块策略
RAG系统分块策略全解析:从基础到进阶 本文系统介绍了22种RAG系统分块策略,分为基础与高级两类。基础策略包括按换行符、定长、滑动窗口、句子、段落和页面分块等6种方法,适用于处理简单文本结构。高级策略包含16种方法,如基于文档层级、关键词、实体、主题、表格感知等,用于处理复杂数据结构。文章指出分块是决定RAG系统成败的关键环节,不当分块会导致模型无法准确获取核心信息。针对不同数据类型、格式和使用场景,文章提供了具体适用的分块策略指南,旨在帮助AI工程师提升RAG系统效率。
2025-09-11 13:47:34
172
原创 【DeepSeek R1构建本地RAG知识库】Rerank在RAG中的重要作用
RAG技术结合大模型虽能提升问答任务效果,但实际应用中常面临召回率与上下文窗口的平衡难题。传统向量搜索会因信息压缩丢失关键内容,而增加返回文档数量又会超出LLM的上下文限制。解决方案是采用两阶段检索策略:先用快速检索模型筛选候选文档,再通过重排序(Rerank)模型精排,仅保留最相关文档。虽然Rerank速度较慢,但能直接处理原始信息,动态分析查询相关性,显著提升结果质量。这种方案在保证效率的同时,优化了LLM的输入,是改善RAG效果的高效方法。
2025-07-29 14:43:37
176
原创 【DeepSeek R1构建本地RAG知识库】5种分块(Chunking)方法对比与分析
RAG(检索增强生成)是企业AI大模型应用落地的核心架构,文档分块(Chunking)是其数据工程的关键环节。本文介绍了5种分块技术:1)固定大小分块简单高效但易割裂语义;2)语义分块通过嵌入向量相似度保持内容连贯性;3)递归分块结合自然分隔符和尺寸限制双重标准;4)基于文档结构分块利用标题/章节等逻辑划分;5)基于LLM分块具备最高语义准确性但计算成本高。实践表明语义分块综合效果较好,但需根据业务场景、模型能力、计算资源等具体评估。这五种技术各有优劣,企业落地时需结合实际情况选择最优方案。
2025-07-03 15:50:48
288
原创 【DeepSeek R1构建本地RAG知识库】dify数据分段策略
摘要: 检索增强生成(RAG)技术结合大语言模型与外部知识库,提升回答准确性。文本分段策略(Chunking)是关键,影响检索效果。Dify平台提供多种分段方式: 普通分块:固定长度分割,灵活性高但可能割裂语义; 问答分块:生成问答对精准匹配,适合FAQ但成本较高; 父子层级分块:保留文档结构,适合法律合同等场景; 全文分块:保留全文内容,适合文章参考但检索效率低。 不同策略适用于不同需求,开发者需权衡语义连贯性与检索效率。通过优化分段策略,可显著提升RAG系统的性能与实用性。
2025-07-01 15:19:33
656
原创 【DeepSeek R1构建本地RAG知识库】数据结构化清洗-知识图谱制作、使用、dify集成
本文探讨了在构建本地RAG(Retrieval-Augmented Generation)系统时,如何通过引入知识图谱来增强系统的知识理解能力。传统的向量数据库和嵌入模型虽然能处理语义匹配,但无法有效捕捉知识间的关联性。知识图谱通过“实体-关系-属性”的结构化表示,能够更好地支持推理、推荐和多跳问答等高级功能。文章详细介绍了知识图谱的基本概念、制作思路,以及如何使用Neo4j图数据库进行知识图谱的构建和查询。通过实例展示了从PDF文件解析到知识图谱入库的全过程,强调了知识图谱在提升RAG系统性能中的重要作用
2025-05-21 13:52:07
365
1
原创 【DeepSeek R1构建本地RAG知识库】数据结构化清洗-工作流自动清洗
在构建本地RAG知识库时,数据结构化清洗是关键但繁琐的步骤。传统方法效率低且易出错,而低代码/无代码平台如Dify提供了更高效的解决方案。Dify通过可视化工作流设计,集成大模型智能处理,支持多格式输入输出,无需编码即可完成复杂的数据清洗任务。文章详细介绍了数据结构化的核心困境、目标、价值及类型,并比较了TXT与Markdown在RAG系统中的适用性。最后,通过Dify平台实战演示了如何在20分钟内完成规则制度文档的结构化清洗,输出标准化数据,展示了自动化工作流在数据处理中的高效性和便捷性。
2025-05-21 10:51:09
997
1
原创 【DeepSeek R1构建本地RAG知识库】数据结构化清洗-python工具清洗
在构建本地 RAG(Retrieval-Augmented Generation)系统时,数据结构化清洗是确保系统高效运行的关键步骤。原始数据往往存在格式混乱、噪声多等问题,直接输入向量数据库会导致检索效率低下,甚至影响大模型的生成质量。通过数据结构化,可以提升检索准确率、增强生成准确性、支持多维度查询、提高索引与检索效率,并便于后期维护与扩展。具体方法包括分类与打标签、实体抽取与关系建模、层次化结构组织等。本文还通过 Python 工具演示了如何将 Excel 格式的肿瘤问答数据转化为 TXT 结构化数据
2025-05-21 09:56:55
629
原创 【DeepSeek R1构建本地RAG知识库】数据结构化清洗
在构建本地RAG(Retrieval-Augmented Generation)系统时,数据质量比模型选择更为关键。非结构化数据会导致检索结果混乱、回答不准确,甚至产生幻觉。通过数据结构化清洗,可以统一字段定义、去重与归一化、合理分块处理、打标签增强语义,从而提升检索效率和生成质量。本文以菜谱知识库为例,详细介绍了数据结构化的核心目的、方法及实战案例。通过结构化处理,菜谱库的检索准确率从38%提升至95%,显著改善了问答效果。数据结构化是优化RAG系统的基石,尤其在垂直领域,能释放数据的深层价值,支持复杂查
2025-05-20 15:29:15
583
原创 【DeepSeek R1构建本地RAG知识库】向量数据库原理讲解
在信息爆炸的时代,传统数据库在处理非结构化数据时显得力不从心,而向量数据库则成为解决这一问题的关键工具。向量数据库的核心功能是存储和查询高维向量,将文本、图像、音频等非结构化信息转化为计算机能理解的数学语言。例如,菜谱中的每个步骤可以通过嵌入模型转化为向量数据,方便快速查找和匹配。虽然关系型数据库如MySQL可以通过数组或JSON类型存储向量数据,但其查询性能远不如专用向量数据库如Milvus。向量数据的生成涉及多个特征,如菜谱的辣度、咸度、烹饪时间等,通过向量化处理,可以将这些特征转化为高维向量。向量数据
2025-05-19 19:26:23
785
原创 【MCP】基于 MCP 实现 AI 应用架构设计新范式的最佳实践
在人工智能技术飞速发展的今天,企业正面临一场深刻的数字化转型浪潮。AI 应用的复杂性与日俱增,传统架构在数据源集成、工具调用、团队协作等方面的局限性日益凸显。如何让 AI 系统更高效、更安全地与外部资源交互?如何降低开发复杂度,加速业务创新?如何在快速变化的技术生态中保持灵活性与可扩展性?这些问题正成为企业构建下一代 AI 应用的核心挑战。1. 传统架构的困境与 AI 应用的新需求过去,AI 系统的开发往往依赖于“烟囱式”架构:每个数据源或工具都需要定制化代码适配,导致开发周期长、维护成本高、扩展性差。
2025-04-23 09:17:32
362
1
原创 【DeepSeek R1构建本地RAG知识库】RAG温度设置分析详解
在构建基于DeepSeek R1的本地RAG(Retrieval-Augmented Generation)知识库时,了解如何调整和优化模型的各种参数是至关重要的。其中,“温度”(Temperature)设置是一个关键参数,它直接影响到生成文本的多样性与准确性。本文将深入探讨RAG温度设置的重要性、其工作原理以及如何根据具体应用场景进行调整温度不改变事实,只改变说话和表达方式。就像同一个厨师,低温时按菜谱和电子秤精确放盐,高温时随手一撒还哼着小曲,但是菜的基础材料不变,但味道体验截然不同。
2025-04-09 19:23:29
482
4
原创 mac常见问题解决方案(持续更新)
Mac电脑以其简洁的设计、稳定的操作系统和强大的功能受到了广大用户的喜爱。然而,即使是最好的设备也会遇到一些小麻烦。本文将针对Mac用户经常遇到的一些问题提供详细的解决方案,帮助您更好地使用您的设备。
2025-04-08 20:12:05
1101
原创 【DeepSeek R1构建本地RAG知识库】RAG十大误区和提高准确率
随着人工智能技术的发展,Retrieval-Augmented Generation(RAG)作为一种结合信息检索与文本生成的技术框架,正逐渐成为许多应用的核心。然而,在实际使用中,开发者们往往会遇到一些常见误区,这些误区可能会显著影响模型的表现。本文将探讨RAG的十大误区,并提供一些实用的建议来提高其准确率。RAG的误区分析:其实小伙伴的很多问题都是对RAG的认知不深引起的。结构化数据:知识库怎么准备数据,结构化是关键部分。问"黑暗森林法则的核心思想" → 返回第三部第200页的早餐描写。
2025-04-08 19:30:46
1365
原创 【DeepSeek R1构建本地RAG知识库】Reranker模型原理详解
随着生成式AI技术的迅猛发展,Retrieval-Augmented Generation(RAG)作为一种结合信息检索与文本生成的技术框架,正在变得越来越流行。它不仅提高了生成内容的相关性和精确度,还在许多实际应用场景中展现出了巨大的潜力。在本文中,我们将深入探讨如何使用DeepSeek R1来构建一个本地化的RAG知识库,并重点介绍其中的关键组件——Reranker模型的工作原理。Reranker模型的主要任务是对检索器初步筛选出来的结果进行重新排序,以确保最相关、最有用的信息能够被优先展示给用户。
2025-04-08 19:11:12
775
原创 MCP、RAG、Agent 架构设计间的关系
在现代人工智能系统设计中,MCP(Memory-Centric Processing)、RAG(Retrieval-Augmented Generation)和Agent架构已成为构建高效、智能应用的三大关键技术支柱。这三种架构各具特色又相互关联,共同推动着AI系统向更接近人类认知能力的方向发展。
2025-04-08 10:29:24
431
原创 【DeepSeek R1构建本地RAG知识库】Embedding模型原理详解
当我们利用检索增强生成(RAG)技术构建本地知识库时,Embedding模型就像是这个知识宝库的智能化导航系统,它能够帮助我们迅速且精准地定位到所需的信息。对于刚刚涉足这一领域的初学者而言,可能会对Embedding模型的本质及其在本地知识库中的功能感到困惑。近期关于本地知识库的课程中,不少学习者也表达了相似的疑问。接下来,我们将采用简单明了的语言,并结合实际案例,深入讨论这些问题,同时也会介绍如何整理本地的知识素材,以便让基于本地RAG的问题回答变得更加精确和全面。
2025-04-04 21:56:46
898
1
原创 xxx.app 已损坏,无法打开,你应该将它移到废纸篓/打不开 xxx,因为它来自身份不明的开发者解决方法
刚用 macOS 的小伙伴或者在更新某个系统版本后运行 App 会提示提示【xxx已损坏,无法打开,你应该将它移到废纸篓解决办法】、【打不开 xxx,因为它来自身份不明的开发者】,【打不开xxxx,因为 Apple 无法检查其是否包含恶意软件】下面小编就教大家如何修复。
2025-04-04 19:58:06
1479
1
原创 【Langchain构建Deepseek RAG知识库】Weaviate集成与知识库导入(最新版本)
随着数据量的不断增长,传统的搜索方法已无法满足用户对精准信息的需求。RAG作为一种新兴的信息检索方式,通过结合深度学习模型的生成能力与精确的信息检索技术,提供了一种全新的解决方案。而Weaviate作为一个高性能的向量搜索引擎,能够高效地存储和查询大规模的数据集,非常适合与RAG架构集成。为了便于处理和优化存储,我们首先需要定义一个文本分割器,用于将大段落的文本切割成更小的部分。这有助于提高后续步骤中生成嵌入向量的精度和效率。
2025-03-18 17:22:06
377
1
原创 【Langchain构建Deepseek RAG知识库】文本切割器详解
在构建基于RAG(Retrieval-Augmented Generation)的知识库系统时,文本切割器(Text Splitter)的质量直接影响检索效果和生成性能。本文以DeepSeek技术文档知识库构建为例,深入解析文本切割器的关键技术要点。
2025-03-04 14:22:37
498
13
原创 【DeepSeek R1构建本地RAG知识库】Dify调优优化
在AI技术快速迭代的当下,检索增强生成(RAG)已成为解决大模型幻觉、知识更新滞后等痛点的核心方案。DeepSeek R1作为国产高性能开源大模型,结合Dify这一低代码AI应用开发平台,能够快速搭建安全可控的本地化知识库系统。本文将从零开始,详解如何通过DeepSeek R1实现本地知识检索增强,并借助Dify的灵活配置完成Prompt工程优化、响应质量调优及系统性能提升。
2025-02-27 11:27:06
2180
原创 AI大模型学习大纲:从基础到前沿
随着人工智能(AI)技术的迅猛发展,特别是大规模预训练模型(如BERT、GPT系列等)在自然语言处理(NLP)、计算机视觉和其他领域的广泛应用,对这些大模型的理解和掌握变得越来越重要。为了帮助初学者以及有经验的专业人士系统地学习和深入理解这一领域,我们设计了一份详尽的AI大模型学习大纲学习目标传统AI算法:为深入理解大模型打下坚实的理论基础和实践技能。机器学习相关:不仅增强了解决实际问题的能力,还为掌握最前沿技术做好了准备。
2025-02-26 18:14:52
402
原创 【DeepSeek R1构建本地RAG知识库】向量库选型对比(Pinecone、Milvus、Chroma、Weaviate、Faiss、Qdrant)
在当今的数字世界中,向量数据库已经成为了存储和检索各种数据(无论是结构化的还是非结构化的)的首选工具。这些数据被转化为所谓的向量嵌入,由特定的模型生成。在开发利用深度学习,尤其是涉及到庞大的语言模型的应用程序时,向量存储起到了无可替代的作用。我们生活的世界中,数据往往是复杂且无规则的,不是所有信息都能简单地适应传统的行列模式。特别是当我们处理图像、视频和自然语言这样的复杂非结构化数据时,向量数据库就显得尤为重要了。向量数据库,顾名思义,它以高维向量的形式存储数据。
2025-02-18 11:07:15
2666
原创 【DeepSeek R1构建本地RAG知识库】应用框架选型对比(MaxKB、Dify、FastGPT、RagFlow、Anything-LLM)
在人工智能技术加速渗透各行各业的今天,检索增强生成(Retrieval-Augmented Generation, RAG)技术正以破竹之势重塑知识管理范式。相较于传统大模型"黑箱式"的知识调用,RAG通过将私有数据与生成模型深度耦合,在保障数据主权的同时实现了精准可控的知识输出,这一特性使得企业级用户对本地化RAG解决方案的需求呈现爆发式增长。面对琳琅满目的RAG框架选型,开发者往往陷入"选择困难症"的泥淖:MaxKB标榜的零代码可视化部署是否真能实现开箱即用?
2025-02-17 12:51:02
3399
原创 【DeepSeek R1构建本地RAG知识库】部署推理的工具框架选型(Xinference和Ollama)
在当前快速发展的AI领域,选择合适的部署推理工具或框架对于项目的成功至关重要。今天,我们将比较两个热门的选择——Xinference和Ollama,帮助你在构建或优化自己的AI应用时做出明智的决定。Xinference是一个性能强大且功能全面的分布式推理框架,它支持多种类型的模型(如大语言模型、语音识别模型、多模态模型等),并能够满足不同场景下的需求。广泛的模型支持:无论是大型语言模型还是复杂的多模态模型,Xinference都能轻松处理。
2025-02-13 11:51:14
1390
原创 【DeepSeek R1构建本地RAG知识库】向量(Embedding)模型选型
检索增强生成(RAG)是生成式 AI 中的一类应用,支持使用自己的数据来增强 LLM 模型的知识。RAG 通常会用到三种不同的AI模型,即 Embedding 模型、Rerankear模型以及大语言模型。本文将介绍如何根据您的数据类型以及语言或特定领域选择合适的 Embedding 模型。用一句话解释Embedding的本质“Embedding是将文本(词、句、段落)映射到高维稠密向量的技术,其核心是将语义信息编码为计算机可计算的数学表示。
2025-02-12 13:42:38
4509
原创 SpringBoot项目Jar包加密,防止反编译
许多项目要求部署到其他公司的服务器上,但是又不想将源码泄露出去。要求对正式环境的启动包进行安全性处理,防止客户直接通过反编译工具将代码反编译出来。
2024-06-23 22:02:37
1933
3
原创 minio数据迁移工具rclone使用
Rclone是一个命令行程序,用于管理云存储上的文件。它是云供应商的web存储接口的一个功能丰富的替代品。超过40种云存储产品支持rclone,包括S3对象存储、企业和消费者文件存储服务以及标准传输协议。Rclone具有与unix命令rsync、cp、mv、mount、ls、ncdu、tree、rm和cat相同的强大的云版本。Rclone熟悉的语法包括shell管道支持和——dry-run保护。它可在命令行、脚本中或通过其API使用。
2024-03-18 14:57:28
2788
3
原创 dolphinschedule3.2单机部署
JDK:下载JDK (1.8+),安装并配置 JAVA_HOME 环境变量,并将其下的 bin 目录追加到 PATH 环境变量中。如果你的环境中已存在,可以跳过这步。二进制包:在下载页面下载 DolphinScheduler 二进制包。
2024-01-31 16:54:47
1160
原创 IntelliJ IDEA好用的插件
在开发过程中,一个好用的插件可以大大提高我们的工作效率。今天,我想向大家介绍一些在IntelliJ IDEA中非常好用的插件。这些插件可以帮助我们更快地完成代码编写、调试和版本控制等任务,从而提高我们的开发效率。
2024-01-31 16:50:44
692
原创 kafka3.6单机部署
部署Kafka之前,我们需要了解其背景和意义。Kafka是一个开源的分布式流处理平台,主要用于构建实时数据流管道和应用。它可以处理高速数据流,并支持发布和订阅模式。Kafka广泛应用于日志收集、流处理、消息队列等领域,具有高吞吐量、可扩展性、可靠性和容错性等优点。随着大数据和云计算技术的发展,数据量呈爆炸式增长,传统的数据处理方式已经无法满足需求。Kafka的出现为大数据处理带来了新的解决方案,它能够快速处理海量数据,提供实时的数据流服务。因此,部署Kafka对于企业来说具有重要的意义。
2024-01-31 16:37:09
1118
原创 Doris数仓开发规范
2.没有办法分区的,数据又较快增长的,没办法按照时间动态分区,可以适当放大一下你的bucket数量,按照你的数据保存周期(180天)数据总量,来估算你的bucket数量应该是多少,建议还是单个bucket大小在1-3G。建议的方式是 1 FE(Follower) + 多个 OBserver(FE)方式,读写分析,所有的写连接 Follower,所有的读连接Observer。1.分桶字段注意事项:这个一般是数据分布比较均衡的,也是经常使用的字段,最好是高基数字段。
2024-01-03 15:02:59
1979
原创 flinkcdc踩坑指南
Flink CDC 常用两种方式进行数据的全量+增量一体的数据同步,数据清洗等功能。使用 DataStream API 进行任务的逻辑实现使用 Flink SQL 的方式进行任务的提交。
2023-10-12 09:23:33
2203
1
原创 flink1.17部署模式和部署方法
Apache Flink是一个框架和分布式处理引擎,用于对无边界和有边界的数据流进行有状态的计算。Flink被设计为可以在所有常见集群环境中运行,并能以内存速度和任意规模执行计算。目前市场上主流的流式计算框架有Apache Storm、Spark Streaming、Apache Flink等,但能够同时支持低延迟、高吞吐、Exactly-Once(收到的消息仅处理一次)的框架只有Apache Flink。
2023-10-10 15:29:28
2882
原创 linux单机部署kafka
Kafka是一个分布式的流处理平台。kafka主要是作为一个分布式的、可分区的、具有副本数的日志服务系性、高容错性、访问速度快、分布式等特性;统, 具有高水平扩展主要应用场景是:日志收集系统和分布式发布–订阅消息系统.
2023-10-09 09:33:10
685
原创 【腾讯云Cloud Studio实战训练营】使用React快速构建点餐H5
随着云计算产业的发展,各种基于云端的 IDE 相继出现。相比于传统的 IDE,云端 IDE 可以更大程度的提升用户工作的效率。云 IDE Cloud Studio 作为腾讯云出品的一款在线云端开发工具,它可以帮助用户减少安装 IDE 的成本,提供在线代码开发、编译、运行、存储的一站式服务。下面我们以“云端开发”为主题,聚焦使用 Cloud Studio 进行编程学习、技术开发等多维度研发体验与探索,实现为公司和团队进行降本增效。本篇也将带大家快速构建React点餐H5页面。
2023-08-04 19:01:29
5811
55
轻松入门Apollo分布式配置中心-服务中间件视频教程
2022-05-09
Jenkins从环境配置到项目开发视频教程
2022-05-09
spark3.x从零到精通视频教程
2022-05-09
Spark从零到精通完整版视频教程
2022-05-09
大数据Redis系统视频教程
2022-06-09
基于AWS云平台大规模集群千亿数据调优方案视频教程
2022-06-09
Java物联网开发“尚方宝剑”之EMQ视频教程
2022-06-09
Java进阶SSO单点登录技术CAS-快速上手与原理探究视频教程
2022-06-09
全面讲解开源数据库中间件MyCat使用及原理视频教程
2022-06-09
大数据技术之Flink CDC视频教程
2022-07-08
大数据监控告警系统(Prometheus)视频教程
2022-07-08
大数据技术之Kylin视频教程
2022-07-08
大数据技术之Superset视频教程
2022-07-08
大数据技术之Atlas视频教程
2022-07-08
大数据技术之Canal视频教程
2022-07-08
大数据技术之Azkaban3.X视频教程
2022-07-08
大数据技术之Maxwell视频教程
2022-07-08
大数据技术之ClickHouse视频教程
2022-07-08
大数据技术之DolphinScheduler2.x视频教程
2022-07-08
大数据技术之HadoopHA视频教程
2022-07-08
mac Adobe Lightroom Classic 2025 v14.3.1 (免费永久版)(芯片通用)
2025-12-04
mac Adobe Photoshop 2025(免费永久版)(26.8 26.6 26.5等版本,芯片通用)
2025-11-24
mac ParallelsDesktop 20.3.1-55959(免费永久版)
2025-10-02
SpringAI+DeepSeek大模型应用开发视频教程
2025-08-22
人工智能实战项目-智慧交通视频教程
2025-02-18
人工智能实战项目-AI在线医生视频教程
2025-02-18
AI机器学习13天零基础入门视频教程
2025-02-18
容器集群管理系统K8S从入门到精通视频教程
2022-11-25
Elastic-Job分布式任务调度视频教程
2022-11-25
JUC并发编程视频教程
2022-11-28
Java数据结构与算法视频教程
2022-11-28
9天快速掌握java基础视频教程
2022-11-28
Java进阶教程Java设计模式(图解+框架源码分析+实战)视频教程
2022-11-28
大数据技术之Apache Paimon
2024-07-24
kubekey-k8s-1.23.7安装包
2023-03-14
nginx、lua、jwt安装包及蓝绿发布代码
2023-02-28
java日志框架视频教程
2022-11-28
Vue.js快速入门视频教程
2022-11-25
深入解析docker容器化技术视频教程
2022-11-25
k8s pod访问集群node网络不通
2023-03-13
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅