TransG : A Generative Model for Knowledge Graph Embedding ACL 2016.Berlin, Germany.

出发点:为了刻画关系的多语义性问题,一个关系应该有多种向量表示,不同的实体对在几何变换中应该采用不同的关系向量。因此,就提出了一种基于贝叶斯非参的无限混合嵌入模型:认为关系向量由若干子成分向量合成,模型会根据实体对自动选择一个关系向量,而多少个这样的关系向量还可以由模型自动选择。

来自:

http://mp.weixin.qq.com/s?__biz=MzI0MDQwMDI3NQ==&mid=2247483667&idx=1&sn=5d51e256ec0c8e8f16205fc68ba43362&scene=23&srcid=0601DJeaykOgoJAOZumFyiGZ#rd

阅读更多
个人分类: 论文学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

TransG : A Generative Model for Knowledge Graph Embedding ACL 2016.Berlin, Germany.

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭