人工智能、机器学习、神经网络、深度学习、AI大模型的区别

AI方向的专用名词特别多,很容易混在一起,文本梳理下从机器学习到AI大模型发展历程和专业名词。

下面按照概念的层次关系依次梳理。

人工智能

人工智能Artificial Intelligence, 简称AI。

人工智能是广义的机器模拟人类智能行为的科学与技术。

所以它的范围非常广,所有机器模拟人的,都可以称之为AI。

也就包括了机器学习、机器人、计算机视觉等各大类。

机器学习

机器学习Machine Learning,简称ML

根据字面意思,让机器像人一样去学习,然后基于学习到的知识进行预测或决策。

它是实现人工智能的一种方式。

专业的解释是:

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

机器学习的方法

监督学习

通过已标注的数据训练。

机器通过已标注数据x,推导出函数f(x),也成为模型。

如果我们有新的未标注数据y, 利用函数可以预测出值为 f(y)

通常用于处理分类、回归问题。

分类的实际场景: 垃圾邮件识别、网页的分类等

监督的学习是训练神经网络和决策树最常见的技术。

神经网络的训练高度依赖已标记的数据集,分类系统用于判断网络的错误,然后调整神经网络去适应。

无监督学习

监督学习的成本很高,大量的标记数据集都是需要人为标记。

无监督学习的训练集是没有人标记的。

目的是希望机器通过学习,自己去推断数据的结构与关系。

常见的算法有聚类,如K-Means。

如:有一个技术平台,利用用户的社交数据,将平台的用户分为java程序员,c++程序员、Python程序员等

半监督学习

半监督学习是介于监督学习和无监督学习之间。

为了解决监督学习成本高,无监督学习目标不明确问题, 通过少量的标记数据和大量的未标记数据进行训练。有重大的实际意义。

大模型的训练大多采用半监督学习。

强化学习

强化学习通过观察来学习动作的完成,每个动作都会对环境产生影响。

强化学习主要应用在机器人控制或其他需要系统控制的领域。

深度学习

深度学习也是机器学习下的一个子领域。

通常是基于多层神经网络的模型。

这个领域目前是机器学习中最热门的,常见算法模型有:

CNN卷积神经网络、RNN循环神经网络、Transformer

神经网络

神经网络Neural Network,简称NN

它是一个算法模型,模仿生物神经元结构。

属于深度学习领域的常用模型。

深度学习

深度学习Deep Learning,简称DL

机器学习的子领域,基于多层神经网络(深度神经网络)的模型

使用多隐藏层自动提取高阶特征(如图像中的边缘→纹理→物体)

依赖大数据和GPU算力。

算法模型:

CNN卷积神经网络

通常用于图像、视频领域。

卷积是什么?

卷积是对输入数据进行局部区域的处理,提取特称。

比如一张照片中元素非常多,但我们只提取人头部分,然后进行面部识别。

还有车辆行驶的道路上,只需要提取道路信息,路边风景建筑色彩都不需要,用于自动驾驶。

RNN循环神经网络

处理时序数据(如文本、语音)

循环的意思是循环扫描输入内容,以建立上下文联系,这就很适合实时翻译,语音处理。

Transformer

Transformer模型架构是2017年Google在论文Attentions is All you need 中提出的模型。

目前已经是最流行的模型架构。

基于transformer的产品有:

OpenAI的ChatGPT、DeepSeek、通义千问、文心一言等几乎所有主流大模型都是基于这个理论模型。

AI大模型

参数量巨大(通常数十亿以上)、训练数据海量的深度学习模型,属于DL的尖端应用。

通用性非常强,几乎什么知识都有涉及。

在工业应用中,虽然大模型很万能,但大模型参数多计算成本高,通常还会配合一些中小型模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值