AI方向的专用名词特别多,很容易混在一起,文本梳理下从机器学习到AI大模型发展历程和专业名词。
下面按照概念的层次关系依次梳理。
人工智能
人工智能Artificial Intelligence, 简称AI。
人工智能是广义的机器模拟人类智能行为的科学与技术。
所以它的范围非常广,所有机器模拟人的,都可以称之为AI。
也就包括了机器学习、机器人、计算机视觉等各大类。
机器学习
机器学习Machine Learning,简称ML
根据字面意思,让机器像人一样去学习,然后基于学习到的知识进行预测或决策。
它是实现人工智能的一种方式。
专业的解释是:
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
机器学习的方法
监督学习
通过已标注的数据训练。
机器通过已标注数据x,推导出函数f(x),也成为模型。
如果我们有新的未标注数据y, 利用函数可以预测出值为 f(y)
通常用于处理分类、回归问题。
分类的实际场景: 垃圾邮件识别、网页的分类等
监督的学习是训练神经网络和决策树最常见的技术。
神经网络的训练高度依赖已标记的数据集,分类系统用于判断网络的错误,然后调整神经网络去适应。
无监督学习
监督学习的成本很高,大量的标记数据集都是需要人为标记。
无监督学习的训练集是没有人标记的。
目的是希望机器通过学习,自己去推断数据的结构与关系。
常见的算法有聚类,如K-Means。
如:有一个技术平台,利用用户的社交数据,将平台的用户分为java程序员,c++程序员、Python程序员等
半监督学习
半监督学习是介于监督学习和无监督学习之间。
为了解决监督学习成本高,无监督学习目标不明确问题, 通过少量的标记数据和大量的未标记数据进行训练。有重大的实际意义。
大模型的训练大多采用半监督学习。
强化学习
强化学习通过观察来学习动作的完成,每个动作都会对环境产生影响。
强化学习主要应用在机器人控制或其他需要系统控制的领域。
深度学习
深度学习也是机器学习下的一个子领域。
通常是基于多层神经网络的模型。
这个领域目前是机器学习中最热门的,常见算法模型有:
CNN卷积神经网络、RNN循环神经网络、Transformer
神经网络
神经网络Neural Network,简称NN
它是一个算法模型,模仿生物神经元结构。
属于深度学习领域的常用模型。
深度学习
深度学习Deep Learning,简称DL
机器学习的子领域,基于多层神经网络(深度神经网络)的模型
使用多隐藏层自动提取高阶特征(如图像中的边缘→纹理→物体)
依赖大数据和GPU算力。
算法模型:
CNN卷积神经网络
通常用于图像、视频领域。
卷积是什么?
卷积是对输入数据进行局部区域的处理,提取特称。
比如一张照片中元素非常多,但我们只提取人头部分,然后进行面部识别。
还有车辆行驶的道路上,只需要提取道路信息,路边风景建筑色彩都不需要,用于自动驾驶。
RNN循环神经网络
处理时序数据(如文本、语音)
循环的意思是循环扫描输入内容,以建立上下文联系,这就很适合实时翻译,语音处理。
Transformer
Transformer模型架构是2017年Google在论文Attentions is All you need 中提出的模型。
目前已经是最流行的模型架构。
基于transformer的产品有:
OpenAI的ChatGPT、DeepSeek、通义千问、文心一言等几乎所有主流大模型都是基于这个理论模型。
AI大模型
参数量巨大(通常数十亿以上)、训练数据海量的深度学习模型,属于DL的尖端应用。
通用性非常强,几乎什么知识都有涉及。
在工业应用中,虽然大模型很万能,但大模型参数多计算成本高,通常还会配合一些中小型模型。