问题描述:
汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘。问应该如何操作?
问题分析:
1.要把n个圆盘从a搬c,只能先把n-1的圆盘从a搬到b,再把第n个圆盘从a搬到c。
2.要把n-1个圆盘从a搬b,只能先把n-2的圆盘从a搬到c,再把第n-1个圆盘从a搬到b。
3.要把n-2个圆盘从a搬c,只能先把n-3的圆盘从a搬到b,再把第n-2个圆盘从a搬到c。
......
这样就不难发现,我们可以步骤总结为:
n个盘子时:
1.把n-1个圆盘从a移动到b(移动期间借助c)
2.把第n个圆盘从a移动到c(移动期间借助b)
3.把n-1个圆盘从b移动到c(移动期间借助a)
实现代码:
def hannuota(n,a,b,c):
if n > 0:
hannuota(n-1,a,c,b)
print("%s 移动到 %s"%(a,c))
hannuota(n-1,b,a,c)
hannuota(3,"塔a","塔b","塔c")
输出:
塔a 移动到 塔c
塔a 移动到 塔b
塔c 移动到 塔b
塔a 移动到 塔c
塔b 移动到 塔a
塔b 移动到 塔c
塔a 移动到 塔c
更多算法算法、python知识分享,可关注wx公众号:程序猫TheCat