常见的四种排名函数的用法(sql)

文章介绍了SQL中的四个排名函数:ROW_NUMBER用于为每一行分配唯一序号,常用于去重和排名;RANK在有相同排序值时会跳过排名,适合排名场景;DENSE_RANK则在相同排序值时连续排名;NTILE将数据均匀分成n份进行编号,适用于数据分组。每个函数都有其特定的使用场景和示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

四个排名函数:
1.row_number
2.rank
3.dense_rank
4.ntile

1. ROW_NUMBER(排名场景推荐)
1.1 介绍

在 SQL 中,ROW_NUMBER() 是一个窗口函数,它为结果集中的每一行分配一个唯一的序号。该函数的语法如下:

ROW_NUMBER() OVER (ORDER BY column1 [, column2, ...])

其中,ORDER BY 子句指定了 ROW_NUMBER() 函数排列行的顺序。如果省略 ORDER BY,则序号将按照结果集中的任意顺序进行分配。

1.2 使用场景及例子

1.2.1 排名
通过order by进行排序得到排名。

SELECT
	id,
	name,
	score,
	row_number() OVER(
	ORDER BY score DESC) AS ranks
FROM
	student_info

在这里插入图片描述

1.2.2 去重
可以使用 ROW_NUMBER() 函数去除重复记录。例如,在一个表中,有重复记录,想要保留每个记录的唯一编号

SELECT id, column1, column2, ...
FROM (
    SELECT *,
           ROW_NUMBER() OVER (PARTITION BY column1, column2, ... ORDER BY id) AS row_num
    FROM table_name
) subquery
WHERE row_num = 1;

1.2.3 分页查询
大可不必,不建议使用。

SELECT *
FROM (
    SELECT *,
           ROW_NUMBER() OVER (ORDER BY id) AS row_num
    FROM table_name
) subquery
WHERE row_num BETWEEN 11 AND 20;
2. RANK
2.1 介绍

在SQL中,RANK()是一个窗口函数,用于根据指定的ORDER BY子句给结果集中的每一行分配排名值。在排序过程中,如果有多个行具有相同的排序值,则它们将被分配相同的排名值。RANK()可以在SELECT语句的SELECT子句、ORDER BY子句或OVER()子句中使用。

以下是RANK()的语法:

RANK() OVER ( [PARTITION BY partition_expression, ... [n]]
ORDER BY sort_expression [ASC|DESC], ... [n] )

在这个语法中,PARTITION BY子句可选,它用于将结果集分割成不同的分区,然后对每个分区的行进行排名。如果省略PARTITION BY,则所有行将合并成一个分区,然后进行排名。
排序表达式是必需的,可以指定一个或多个表达式以排序行。SORT_EXPRESSION可以是列名称、函数、常量或表达式。

2.2 使用场景及例子

2.2.1 排名
通过order by进行排序得到排名。

SELECT
	id,
	name,
	score,
	RANK() OVER(
	ORDER BY score DESC) AS ranks
FROM
	student_info

在这里插入图片描述
2.2.2 分组排名

SELECT
	id,
	name,
	score,
	RANK() OVER(PARTITION BY name
	ORDER BY score DESC) AS ranks
FROM
	student_info

在这里插入图片描述
PARTITION BY子句指定了name列作为分区表达式,ORDER BY子句按score列降序排序。

但使用RANK排名有个问题,即字段内容相同时,会得到相同名次,并且后续会跳过几个名次,如图:
在这里插入图片描述

3. DENSE_RANK
3.1 介绍

DENSE_RANK()是SQL中的一个窗口函数(window function),用于查询结果中的排名。与RANK()类似,不同之处在于DENSE_RANK()不会出现相同的排名。即使有多个值排名相同,紧随其后的排名也会按照定义进行递增。解决RANK的问题。

3.2 使用场景及例子

3.2.1 排名
通过order by进行排序得到排名。

SELECT
	id,
	name,
	score,
	DENSE_RANK() OVER(
	ORDER BY score DESC) AS ranks
FROM
	student_info

在这里插入图片描述

4. NTILE
4.1 介绍

NTILE函数用于将一组数据按照数量均匀地分成若干份,并给每份数据编号。常见的用途是将数据进行分组或划分。
语法:

NTILE(n) OVER (ORDER BY expr)

其中n:指定将数据分成的份数。ORDER BY expr:指定按照哪个表达式来进行排序。

4.2 使用场景及例子

4.2.1 排名
通过order by进行排序得到排名。

SELECT
	id,
	name,
	score,
	NTILE(4) OVER(
	ORDER BY score DESC) AS ranks
FROM
	student_info

在这里插入图片描述

### 关于Cadence 17.2版本中Pspice的教程 #### 安装指南 对于希望安装Cadence PSpice 17.2版本的用户来说,需注意几个关键步骤。当点击安装Cadence软件时,应指定添加安装包路径以及设定不含空格和汉字字符的安装路径[^1]。完成基础软件部署后,还需通过加入Hotfix文件的方式安装必要的更新补丁。最后,在一切设置妥当之后,务必记得重启计算机以使更改生效。 #### 绘制原理图 一旦上述准备工作就绪,则可以在重新启动后的环境中利用OrCAD Capture CIS工具着手绘制所需的电路原理图。此阶段涉及的具体操作包括但不限于元件的选择、放置及其间的连接构建等动作。 #### 创建自定义电路模块 针对那些想要进一步定制化工作流或者提高效率的技术人员而言,掌握如何基于个人需求创建专属的电路组件显得尤为重要。在Cadence PSpice环境下,这意呸着能够把一系列预设好的子电路打包成独立单元以便重复调用或分享给团队成员。具体实现过程涵盖了从草稿构思到最后成品导出的一系列环节[^2]。 #### 设计流程概览 在整个电子设计自动化领域里,由概念验证直至最终产品成型往往遵循一套既定的工作模式。对于采用Cadence平台开展工作的工程师们来讲,这套方法论通常始于案例研究进而过渡至详尽的设计实施;期间会经历诸如原理图表绘、错误检测修正、性能测试评估等多个重要节点直到所有目标达成为止[^3]。 #### 原理图设计概述 深入探讨一下项目结构的话就会发现,“Design Resources”部分主要负责存储整个项目的配置信息。“Outputs”则用于汇总各类中间产物或是终期报告文档。“Referenced Projects”允许设计师轻松关联其他辅助性的外部资料库从而促进跨部门协作交流活动顺利展开。值得注意的是如果当前任务涉及到仿真的话那么这里还会额外显示出专门用来支持此类作业的相关条目——即所谓的“PSpice Resources”。 ```python # Python代码示例仅作为装饰用途,并不实际参与解释说明逻辑 def example_function(): pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值