VGG16卷积神经网络实现数字识别应用 在黑色画板上使用鼠标写出数字,比如8,单击“人工智能预测”按钮。稍等一会会在‘预测结果是:’出现使用VGG16卷积神经网络预测的结果,如图。直接打开main.exe应用程序后,出现运行程序界面 是黑色界面,需要稍等一会,然后出现pyqt5编好的可视化界面。本应用可直接在win10上运行,不需要安装编程工具或运行库。如果需要再次测试,可以单机‘清空画板’按钮,重新写。
机器学习--基于FaceNet的人脸识别实战3.0 原先2.0版本的构造人脸库对应特征文件的功能,3.0版本移到了左上方,更名为“初始人脸库特征”。因为在3.0版本中,我们在人脸库中放了1242张图片,生成相应特征会比较耗时,不会低于10分钟。如果实验时,我们想把自己的照片或其他的一些人物照片加入人脸库并把特征追加到特征文件中,看看效果好不好。我们这时候使用右上角的“单脸入库并算特征”功能即可。相对2.0的版本,本版本主要新增了两项功能:单图像新增到人脸库,从人脸库中找出最像的三幅人脸。
机器学习--基于FaceNet的人脸识别实战2.0 在2.0版本中,我们增加“构建人脸库特征”功能,该功能能提前把人脸库(目前指定项目下的image文件夹作为人脸库。)的所有人脸特征先算好,然后这些特征数据及每张人脸的文件名保存到database_features_lables文件夹中的database_features.pkl和lables.pkl文件中。在1.0版本中,每次识别的时候,都需要重新计算人脸库里面所有人脸的特征,这是非常痛苦的。假如1张脸耗时5秒,有100张,执行10次就是5*100*10=5000秒>3600秒=1小时。
机器学习--基于FaceNet的人脸识别实战1.0 第五步,使用calculate_distance方法,计算出库中所有人脸的特征与测试人脸的特征之间的距离。第三步,将矫正后的测试图片facenet_model实例(通过load_weights方法加载类人脸特征提取模型参数),提取出测试图片的特征。当我们单击“人脸识别”按钮后,我们将把左侧的图片拿过来,使用Face_Rec类的recognize方法进行人脸特征比对。第二步,确定有人脸的基础上,对测试的图片进行预处理,比如裁剪出图片中的人脸部分,比如脸倾斜了要矫正对齐。1.判定是否是人脸的模型。
机器学习--智能推荐算法(关联规则Apriori算法)原理 关联规则经常用于智能推荐。像平时大家购物的过程中,我们买了手机,根据关联关系,购物平台就会推荐耳机,手机保护套等配件给我们。类似还有,通过社交平台外卖平台知道你的很多朋友都爱吃辣的,那么根据你和朋友的关联关系,外卖就会推荐一些辣的菜品给你。为了更好的理解关联规则。我们下面通过一个简单购物案例来讲解几个概念。现在有10个顾客到超市买了西红柿,鸡蛋,袜子,苹果,排骨这五种商品,如下表:表1-1通过表1-1我们现在希望得到一些关联规则,比如顾客买了西红柿的情况下,会不会大概率买苹果呢?
机器学习--集成学习(随机森林,Adaboost,GBM和Stacking) 集成学习算法,和以往一个个单独的算法不太一样。比如我们可以使用决策树生成一个分类器,使用支持向量机生成一个分类器。那么,现在能不能构造这样一个分类器呢?综合考虑决策树生成的分类器和支持向量机的分类器的结果。确定最终的分类情况。我们可以想象这种算法效果应该会比单独使用一种分类器的效果更好。就比如,班上41个人参加考试,我不会要去抄袭其他40人的试卷,其中某道选择题30人选A,3人选B,6人选C,1人选D。我就选了A。整张试卷下来我都这么选。通常我们考的分数会比任何1人都考的好。
机器学习--朴素贝叶斯原理 在讲解朴素贝叶斯前,我们先来考虑解决一个问题。一、背景我们观察下面这张表,我们希望从表中找出规律。找出什么规律呢?期末考试球赛直播心情行动没有有不好看球赛明天无不好学习没有/有不好看球赛没有有良好看球赛没有无不好约会没有有良好看球赛临近无良好学习临近无不好出门运动明天无良好学习没有有良好学习表1-1我们表1-1红色字体部分,在没有期末考试,有球赛和心情良好的3条记录中,有1条是学习,2条是看球赛。
机器学习--决策树(ID3,C4.5,CART)的原理 ID3,C4.5和CART三种决策树。树结构是计算机领域中常见的一种数据结构,他由1个根节点,若干个中间节点和若干个叶子节点构成。如图所示,1是根节点(根节点明显特征是没有任何的输入),2和3是中间节点(中间节点明显特征是有输入且有输出),4和5及6是叶子节点(叶子节点明显特征是没有任何的输入).
机器学习--支持向量机原理与数学推导过程 一、支持向量机理论理解支持向量是用于二分类的一种方法。当然如果我想多分类,也可以使用支持向量机。无非就是在二分类的的基础之上再做分类。那么支持向量机是如何做二分类的呢?我们以二维平面可以分开的两个类别来理解支持向量机。如图:用支持向量机的思想是什么呢?首先我们找两个分类的切线,这些切线有无数多条。如图红色和蓝色的线条我们第一步要找到两个类别斜率相同的切线,并且这两根切线在两个分类之间。这样的话我们就可以找到有限的几对切线了如上图,假如我们找到了2组切线对,他们的斜率都相同。那我们选择哪一对呢。