Flink-Sql 实战案例
1.环境准备
下载代码并安装环境,前提是准备好Docker环境。
git clone git@github.com:ververica/sql-training.git
cd sql-training
docker-compose up -d
会先下载以来镜像,时间比较慢,耐心等待。
接下来进入sql-client
docker-compose exec sql-client ./sql-client.sh
2.实战演示
表定义,Rides表,类型是source表,更新模式为追加。
tables:
- name: Rides #表名
type: source #表类型
update-mode: append #更新模式
schema:
- name: rideId #路线ID
type: LONG
- name: taxiId #出租车ID
type: LONG
- name: isStart #是否出发
type: BOOLEAN
- name: lon #经度
type: FLOAT
- name: lat #纬度
type: FLOAT
- name: rideTime #时间
type: TIMESTAMP
rowtime:
timestamps:
type: "from-field"
from: "eventTime"
watermarks:
type: "periodic-bounded"
delay: "6000

本文介绍了Apache Flink的SQL实战,包括环境准备、实战演示五大需求:筛选纽约行车记录、计算乘客数量、区域车辆计数、数据写入Kafka及ES。详细阐述了如何使用UDF函数以及定义source和sink表,帮助理解Flink的实时数据处理能力。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



