BNU 34978 汉诺塔 求期望步数

这篇博客探讨了在随机放置汉诺塔盘子的情况下,如何求解恢复原位所需步数的期望值。通过动态规划dp[i]表示随机i个盘子时的期望步数,并结合普通汉诺塔玩法的步数f[i],分析了当盘子随机放置到不同柱子时的转移状态,从而推导解决方案。
摘要由CSDN通过智能技术生成

题目链接:点击打开链接

我们用dp[i]表示 随机i个盘子时,恢复原位需要的步数的期望

f[i]表示i个盘子下普通的汉诺塔玩法的步数


既然是随机,那么我们就认为是在上一次随机的情况下,

把第n个放到任意一根柱子的底部

那么若随机放到了第3个柱子,则步数就是dp[n-1]

若放到了第1根柱子,则先把前面的n-1个盘子移动到第2根柱子上,花费是dp[n-1]

然后再把n盘子移动到第三根柱子,再把其他盘子移动到第三根柱子, 花费是 1+f[n-1]

就是这样_(:зゝ∠)_


#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <vector>
#include <cmath>
using namespace std;
#define N 100
#define ll long long
ll n;
double f[N];
double dp[N];
int main() {
    f[1] = 1.0;
    for(int i = 2; i < N; i&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值