题目链接:点击打开链接
我们用dp[i]表示 随机i个盘子时,恢复原位需要的步数的期望
f[i]表示i个盘子下普通的汉诺塔玩法的步数
既然是随机,那么我们就认为是在上一次随机的情况下,
把第n个放到任意一根柱子的底部
那么若随机放到了第3个柱子,则步数就是dp[n-1]
若放到了第1根柱子,则先把前面的n-1个盘子移动到第2根柱子上,花费是dp[n-1]
然后再把n盘子移动到第三根柱子,再把其他盘子移动到第三根柱子, 花费是 1+f[n-1]
就是这样_(:зゝ∠)_
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <vector>
#include <cmath>
using namespace std;
#define N 100
#define ll long long
ll n;
double f[N];
double dp[N];
int main() {
f[1] = 1.0;
for(int i = 2; i < N; i&#