- 博客(13)
- 收藏
- 关注
原创 费用流基础
给定一个包含n个点m条边的图,并给定每条边的容量和费用,边的容量非负。图中可能存在重边和自环,保证费用不会存在负环。求从S到T的最大流,以及在流量最大时的最小费用。
2024-01-08 19:33:00
1008
1
原创 网络流引入
首先我们定义一个名为“网络”的,并将其边权命名为“容量”,额外的,我们有一个“源点”和一个“汇点”,顾名思义,就像水流或电流,也具有它们的性质。如果把网络想象成一个管道网络,那流就是其中流动的水。每条边上的流不能超过它的容量,并且对于除了源点和汇点外的所有点(即中继点),流入的流量都等于流出的流量。
2023-12-31 21:14:34
1031
原创 安装Node.JS
3、如果设置了全局安装目录,【用户变量】下的【Path】将默认的 C 盘下 APPData/Roaming\npm 修改为【C:\Program Files\nodejs\node_global】,【C:\Program Files\nodejs\node_cache】,这是nodejs默认的模块调用路径。C:\Program Files\nodejs\\node_modules 】2、【系统变量】下的【Path】添加上node的路径【C:\Program Files\nodejs\】
2023-11-18 11:05:15
155
1
原创 JZOJ-5949——人生赢家 详细推导
的随机整数,如果这个随机数和给出的m个数字中的其中一个数字相等,那么就停止生成随机数,否则继续生成,求出所有生成的数的和的期望。众所周知,DH是一位人生赢家,他不仅能虐暴全场,而且还正在走向人生巅峰;注意了本题没有SPJ,必须和答案完全相同才能通过本题。这道题我们可以将情况想象成一棵树,其中每一层有。输出一行一个实数表示期望,保留6位小数,对于 100% 的数据 , 满足。对于 20% 的数据 , 满足。对于 30% 的数据 , 满足。对于 50% 的数据 , 满足。众所周知,期望是概率乘总和。
2023-09-22 20:43:24
142
原创 【初赛】关于计数、基数和桶排序的一些区别
这篇博客主要介绍桶排序、计数排序和基数排序的工作原理及流程,并介绍其中的差别。若是不想听博主的 废话 大段文字,可以跳到文末。桶排序的工作的原理是将数组分到 kkk 的桶里。其工作流程为:总的来说,桶排序是将数据划分为 kkk 个桶,分别进行排序,其时间复杂度随着桶的数量(kkk)的增加而减少,趋向 O(n)O(n)O(n) ,但同时空间复杂度也会增加至 maxV−minVmaxV - minVmaxV−minV简单来说,计数排序可以理解为一种特殊的桶排,即 k=nk = nk=n 的情况。其工作流程
2023-09-11 21:22:31
177
原创 错排公式的推导和应用
问题:有8个信封,8封信,若是每一封信都装错,则有多少种情况?形如以上问题的推导,便是错排问题。ak1k1nn∈Nakk而用以解决错排问题的公式便是错排公式。
2023-09-08 21:52:24
1313
1
原创 排列组合初赛详解
n 封不同的信,编号分别是 1,2,3,4,5,现在要把这五封信放在编号 1,2,3,4,5 的信封中,要求信封的编号与信的编号不一样。例题:现有 $ n $ 完全相同的元素,要求将其分为 $ k $ 组,保证每组至少有一个元素,一共有多少种分法?$ n + k $ 完全相同的元素,要求将其分为 $ k $ 组,每组至少有一个元素,一共有多少种分法?变式:现有 $ n $ 完全相同的元素,要求将其分为 $ k $ 组,一共有多少种分法?第二种情况,因为有一封信是正确的所以,只需将正确的和第。
2023-09-02 18:57:58
607
原创 主定理(master定理)
TnaTnbfnTnaTnbfnaaa为子问题个数,bbb为子问题的规模其中需满足a≥1b1a≥1b1若函数nlogbanlogba更大,则TnOnlogbaTnOnlogba;若函数fnf(n)fn更大,且满足afnb≤cfnafnb≤cfn,则TnOfnTnOfn));若两函数相等,则TnOnlo。
2023-09-01 19:26:06
4601
1
原创 CSP 2019 提高级第一轮易错题解析
9. 一些数字可以颠倒过来看,例如0、1、8颠倒过来看还是本身,6颠倒过来是9,9颠倒过来看还是6,其他数字颠倒过来都不构成数字。第三位只能填0,1,8三个数,而4,5位由1,2位决定。因为0,1,8三个数对3取模分别余0,1,2。所以不用考虑被三整除的问题(不论1,2位填什么,加上0,1,8种的一个数都可以被三整除)。8. G是一个非连通无向图(没有重边和自环),共有28条边,则该图至少有( )个顶点。6. 由数字1,1,2,4,8,8所组成的不同的4位数的个数是( )则总共有102种情况。
2023-08-31 19:08:40
222
原创 CSP-S 2019 第9题解析
9. 一些数字可以颠倒过来看,例如0、1、8颠倒过来看还是本身,6颠倒过来是9,9颠倒过来看还是6,其他数字颠倒过来都不构成数字。类似的,一些多位数也可以颠倒过来看,比如106颠倒过来是901。假设某个城市的车牌只有5位数字,每一位都可以取0到9。因为0,1,8三个数对3取模分别余0,1,2,构成%3的完全剩余系(不论1,2位填什么,加上0,1,8种的一个数都可以被三整除),所以不用考虑被三整除的问题,只需考虑第1,2位的排列。第三位只能填0,1,8三个数,而4,5位由1,2位决定。
2023-08-21 14:55:43
392
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人