HDU 3564 Another LIS splay(水

10 篇文章 0 订阅
2 篇文章 0 订阅

题意:

给定一个空序列

插入n个数(依次插入 1、2、3、4··n)

下面n个数表示i插在哪个位置。

每插入一个数后输出这个序列的lis

然后。。。

因为每次插入的数都是当前序列最大的数

所以不会影响后面的数的dp值

那么这个位置的dp值就是插入位置的前面最大dp值+1

然后输出这个序列最大的dp值。

==

思路:

splay。。。

Q:为何这题需要用splay,不是简单的线段树吗

A: 因为我智商不够想不出线段树怎么写。。


#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
template <class T>
inline bool rd(T &ret) {
	char c; int sgn;
	if(c=getchar(),c==EOF) return 0;
	while(c!='-'&&(c<'0'||c>'9')) c=getchar();
	sgn=(c=='-')?-1:1;
	ret=(c=='-')?0:(c-'0');
	while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
	ret*=sgn;
	return 1;
}
template <class T>
inline void pt(T x) {
    if (x <0) {
        putchar('-');
        x = -x;
    }
    if(x>9) pt(x/10);
    putchar(x%10+'0');
}
using namespace std;
inline int Mid(int a,int b){return (a+b)>>1;}
#define N 100010
#define L(x) tree[x].ch[0]
#define R(x) tree[x].ch[1]
#define Siz(x) tree[x].siz
#define Father(x) tree[x].fa
#define Max(x) tree[x].max
#define Val(x) tree[x].val
#define Pt(x) tree[x].pt()
struct node{
    int ch[2], siz, fa;
    int max, val;
    void pt(){printf("val:%d max:%d siz:%d fa:%d{%d,%d}\n", val,max,siz,fa,ch[0],ch[1]);}
}tree[N*2];
int tot, root;
void Newnode(int &id, int val, int fa, int siz = 1){
    id = ++tot;
    L(id) = R(id) = 0;
    Father(id) = fa;
    Siz(id) = siz;
    Max(id) = Val(id) = val;
}

void push_up(int id){
    Siz(id) = Siz(L(id)) + Siz(R(id)) +1;
    Max(id) = max(Max(R(id)), Max(L(id)));
    Max(id) = max(Val(id), Max(id));
}
void push_down(int id){}

void Rotate(int id, int kind){
    int y = Father(id);
    push_down(y); push_down(id); //here
    tree[y].ch[kind^1] = tree[id].ch[kind];
    Father(tree[id].ch[kind]) = y;
    if(Father(y))
        tree[Father(y)].ch[R(Father(y))==y] = id;
    Father(id) = Father(y);
    Father(y) = id;
    tree[id].ch[kind] = y;
    push_up(y);
}
void splay(int id, int goal){
    push_down(id);
    while(Father(id) != goal){
        int y = Father(id);
        if(Father(y) == goal)
            Rotate(id, L(y)==id);
        else
        {
            int kind = L(Father(y)) == y;
            if(tree[y].ch[kind] == id)
            {
                Rotate(id, kind^1);
                Rotate(id, kind);
            }
            else
            {
                Rotate(y, kind);
                Rotate(id,kind);
            }
        }
    }
    push_up(id);
    if(goal == 0)root = id;
}
int Get_kth(int kth, int sor){//找到在sor后面的第k个数
    push_down(sor);
    int id = sor;
    while(Siz(L(id)) != kth){
        if(Siz(L(id)) > kth)
            id = L(id);
        else
        {
            kth -= (Siz(L(id))+1);
            id = R(id);
        }
        push_down(id);
    }
    return id;
}
void init(){
	Father(0) = L(0) = R(0) = Siz(0) = 0;
	Max(0) = 0;
	tot = 0;
	Newnode(root, 0, 0);
	Newnode(R(root), 0, root);
	push_up(root);
}
void debug(int x){
	printf("%d:\n", x);
	Pt(x);
	if(L(x))
		debug(L(x));
	if(R(x))
		debug(R(x));
}
void insert(int pos){
	splay(1, 0);
	int u = Get_kth(pos, 1);
//	if(pos == 2){cout<<"=="; debug(root);}
	int v = Get_kth(pos+1, 1);
	splay(u, 0);
	splay(v, root);
//	if(pos == 2){cout<<"=="; debug(root);}
	Newnode(L(v), max(Val(root), Max(L(root))) +1, v);
	push_up(v);
	push_up(u);
//	printf("[%d,%d]\n", u, v);
}

int n;
int main() {
	int T, Cas = 1; cin>>T;
    while(T--){
    	rd(n);
    	init();
    //	debug(root);
    	printf("Case #%d:\n", Cas++);
    	for(int i = 1, m; i <= n; i++){
    		rd(m);
    		insert(m);
    	//	printf("id:%d, pos:%d\n", i, m);    		debug(root);
    		pt(Max(root)); putchar('\n');
    		splay(tot, 0);
    	//	puts("================");debug(root);
    	}/**/
        puts("");
    }
    return 0;
}
/*
1
7
0 1 1 1 0 4 1

*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值