HDU 5338 ZZX AND PERMUTATIONS 线段树

链接

多校题解

胡搞。。。

题意太难懂了。。

ZZX and Permutations

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 310    Accepted Submission(s): 83


Problem Description
ZZX likes permutations.

ZZX knows that a permutation can be decomposed into disjoint cycles(see https://en.wikipedia.org/wiki/Permutation#Cycle_notation). For example:
145632=(1)(35)(462)=(462)(1)(35)=(35)(1)(462)=(246)(1)(53)=(624)(1)(53)……
Note that there are many ways to rewrite it, but they are all equivalent.
A cycle with only one element is also written in the decomposition, like (1) in the example above.

Now, we remove all the parentheses in the decomposition. So the decomposition of 145632 can be 135462,462135,351462,246153,624153……

Now you are given the decomposition of a permutation after removing all the parentheses (itself is also a permutation). You should recover the original permutation. There are many ways to recover, so you should find the one with largest lexicographic order.
 

Input
First line contains an integer  t , the number of test cases.
Then  t  testcases follow. In each testcase:
First line contains an integer  n , the size of the permutation.
Second line contains  n  space-separated integers, the decomposition after removing parentheses.

n105 . There are 10 testcases satisfying  n105 , 200 testcases satisfying  n1000 .
 

Output
Output  n  space-separated numbers in a line for each testcase.
Don't output space after the last number of a line.
 

Sample Input
  
  
2 6 1 4 5 6 3 2 2 1 2
 

Sample Output
  
  
4 6 2 5 1 3 2 1
 

Author
XJZX
 

Source
#include <iostream>
#include <fstream>
#include <string.h>
#include <string>
#include <time.h>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
#include <stack>
#include <cstring>
#include <cmath>
#include <set>
#include <vector>
using namespace std;
template <class T>
inline bool rd(T &ret) {
	char c; int sgn;
	if (c = getchar(), c == EOF) return 0;
	while (c != '-' && (c<'0' || c>'9')) c = getchar();
	sgn = (c == '-') ? -1 : 1;
	ret = (c == '-') ? 0 : (c - '0');
	while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
	ret *= sgn;
	return 1;
}
template <class T>
inline void pt(T x) {
	if (x < 0) {
		putchar('-');
		x = -x;
	}
	if (x > 9) pt(x / 10);
	putchar(x % 10 + '0');
}
typedef long long ll;
typedef pair<int, ll> pii;
const double eps = 1e-9;
const int N = 200000 + 10;
#define L(x) tree[x].l
#define R(x) tree[x].r
#define M(x) tree[x].ma
#define ls (id<<1)
#define rs (id<<1|1)
struct node {
	int l, r;
	int ma;
}tree[N << 2];
int a[N], p[N];
void Up(int id) {
	M(id) = max(M(ls), M(rs));
}
void build(int l, int r, int id) {
	L(id) = l; R(id) = r;
	if (l == r) { M(id) = a[l];return; }
	int mid = (l + r) >> 1;
	build(l, mid, ls); build(mid + 1, r, rs);
	Up(id);
}
void update(int pos, int id) {
	if (L(id) == R(id))
	{
		M(id) = -1;return;
	}
	int mid = (L(id) + R(id)) >> 1;
	if (pos <= mid)update(pos, ls);
	else update(pos, rs);
	Up(id);
}
int query(int l, int r, int id) {
	if (l == L(id) && R(id) == r)return M(id);
	int mid = (L(id) + R(id)) >> 1;
	if (r <= mid)return query(l, r, ls);
	else if (mid < l)return query(l, r, rs);
	else return max(query(l, mid, ls), query(mid + 1, r, rs));
}
int n;
int use[N], num[N];
pii b[N];
int ans[N];
void getcir(int l, int r) {
	if (l > r)return;
	for (int i = l; i <= r; i++) {
		if (use[a[i]])continue;
		int to = i + 1;
		if (to > r) to = l;
		ans[a[i]] = a[to];
		use[a[i]] = 1;
		num[a[to]] = 1;
		update(i, 1);
	}
}
int getmax(int l, int r) {
	if (l > r)return -1;
	return query(l, r, 1);
}
int hehe[N];
set<int>s;
int main() {
	int T;rd(T);
	while (T--) {
		s.clear();
		s.insert(0);
		rd(n);
		for (int i = 1; i <= n; i++) {
			rd(a[i]);
			p[a[i]] = i;
			use[i] = num[i] = false;
			b[i] = { a[i], i };
			ans[i] = 0;
		}
		build(1, n, 1);
		sort(b + 1, b + 1 + n);
		int top = 0;
		for (int i = 1; i <= n; i++) {
			if (use[i])continue;
			int idx = b[i].second;
			int t[3] = { -1, -1, -1 };
			if (idx < n && !num[a[idx+1]])t[0] = a[idx + 1];
			top = -(*s.upper_bound(-idx));
			t[1] = getmax(top + 1, idx - 1);
			if (num[i]==false)t[2] = i;
			if (t[0] > max(t[1], t[2]))
			{
				ans[i] = t[0]; use[i] = 1;
				num[t[0]] = 1; 
				update(idx + 1, 1);
			}
			else if (t[1] > max(t[0], t[2]))
			{
				getcir(p[t[1]], idx);
				s.insert(-idx);
			}
			else {
				getcir(idx, idx);
				s.insert(-idx);
			}
		}
		for (int i = 1; i <= n; i++)
		{
			pt(ans[i]);i == n ? putchar('\n') : putchar(' ');
		}
	}
	return 0;
}
/*
99
3
1 3 2
ans: 3 2 1
5
1 5 2 3 4
ans: 5 3 4 2 1
 
5
5 2 3 4 1
ans : 5 3 4 1 2
 
7
6 7 1 3 2 5 4
ans:7 5 3 4 2 6 1
 
1
8
1 3 6 4 8 7 2 5
 
1
5
3 2 4 5 1
 
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值