神经网络
文章平均质量分 95
卷心菜菜
系统科学/动力学重构/数字孪生生命/混沌调控/强化学习
展开
-
【精读Yamamoto】方向性连接如何丰富神经网络的功能复杂度 | 体外神经元培养实验 | 脉冲神经元模型(SNN) | 状态转移模型
在神经科学领域,理解大脑如何通过其复杂的**网络结构**实现**高级功能**一直是一个核心议题。最近,一项发表在《Nature Communications》上的研究为我们提供了新的视角,该研究由Nobuaki Monma和Hideaki Yamamoto博士领导的团队完成,他们通过创新的实验和计算模型,揭示了在生物神经网络中引入方向性连接如何显著影响网络的动态行为和功能性复杂度。原创 2024-05-13 18:37:15 · 1158 阅读 · 0 评论 -
【论文泛读|附源码】如何进行动力学重构? 神经网络自动编码器结合SINDy发现数据背后蕴含的方程
这一篇文章叫做 **数据驱动**的**坐标发现与方程发现算法**。想回答的问题很简单,就是根据数据写方程。想想牛顿的处境,如何根据各种不同物体下落的数据,写出万有引力的数学公式的。这篇文章就是来做这件事的。当然,这篇论文并没有从牛顿视角,完全去思考牛顿所想。而是利用现有的**深度学习技术** 和 **动力学重构的方法** 。提出了一种框架,基于现有的计算机技术,去发现物质运动背后的物理规律。这里直接给出这篇方法的核心思路图,我们后面会逐个讲解。原创 2024-05-03 16:04:41 · 1797 阅读 · 10 评论 -
神经网络(1)---传统神经网络准备
学习吴恩达的课程所写图像分类原理对于一个rbg的图像,计算机是使用一个r矩阵,一个b矩阵和一个g矩阵来使得图像能够被肉眼看见,而在图像识别中,我们要把这个rbg图像转化成一个向量x来作为输入,所以,我们就一列一列的遍历图像矩阵,先遍历r矩阵,一个一个排成列向量,然后接下来b矩阵,g矩阵,最后可以得到一个n行1列的列向量作为特征向量。常用符号说明:样本:(x,y) 特征向量的维数使用n表示 训练样原创 2017-11-29 03:12:51 · 423 阅读 · 0 评论