每周一本书之《Python大战机器学习:数据科学家的第一个小目标》

数据科学家可谓是当下炙手可热的职业,机器学习则是他们的必备技能。机器学习在大数据分析中居于核心地位,在互联网、金融保险、制造业、零售业、医疗等产业领域发挥了越来越大的作用且日益受到关注。

Python作为最好最热门的编程语言之一,以简单易学、应用广泛、类库强大而著称,是实现机器学习算法的首选语言。

本周,小编就为大家分享一本有关机器学习和Python的入门级图书《Python大战机器学习:数据科学家的第一个小目标》。本书以快速上手、四分理论六分实践为出发点,讲述了机器学习的算法和Python 编程实践,采用“原理笔记精华 + 算法Python 实现 + 问题实例 + 代码实战 + 运行调参”的形式展开,理论与实践结合,算法原理与编程实战并重。

【每周一本书】之《Python大战机器学习:数据科学家的第一个小目标》-图片1

本书从内容上大致分为四个部分:

第一篇:机器学习基础篇(第1~6 章):

包括线性模型、决策树、贝叶斯分类、k近邻法、数据降维、聚类和 EM算法等内容。

这些基础算法非常经典,原理也相对简单,是入门的最佳选择,掌握这些算法,才能更好地理解后续的高级算法。非菜鸟可以直接忽略这部分。

第二篇:机器学习高级篇(第7~10 章):

包括支持向量机、人工神经网络、半监督学习和集成学习等内容。

这些高级算法是目前应用非常广泛,也是效果不错的算法,需要深入理解算法的原理、优劣势等特点以及应用场景,要能达到应用自如的程度。

第三篇:机器学习工程篇(第11~12章):

讲述机器学习工程中的实际技术,包括数据预处理,模型评估、选择与验证等内容。

数据清洗、数据预处理和模型评估选择在实际中非常重要,在整个工程项目的开发过程中通常占到一半以上的时间,这部分给出的一些步骤和方法是实践的精华,值得熟练掌握。

第四篇:Kaggle 实战篇(第13章):

Step by step讲述了一个Kaggle竞赛题目的实战,有代码,有分析。

Kaggle是目前顶级的数据科学比赛平台,很多机器学习的牛人都在这里玩过,咱们可以学习牛人好的算法,也可以启发自己的思路。对于梦想成为牛人的您,还是去里面混混先:)万一拿了个好的名次呢,拿个一流公司的offer还是很easy的。

适读人群:

本书可供为高等院校计算机、金融、信息、自动化及相关理工科专业的本科生或研究生使用,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。

本书的代码全部开源,请自行下载 https://github.com/huaxz1986/git_book,也欢迎在这上面交流。

阅读更多
文章标签: 大数据
个人分类: 每周一本书
想对作者说点什么? 我来说一句

python大战机器学习

2018年01月23日 76.85MB 下载

Python大战机器学习》代码

2017年08月21日 611KB 下载

Python大战机器学习 配书代码

2018年03月08日 551KB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭