题目链接: poj 1330
题目大意: 给出你一棵树,最后一行询问顶点a和顶点b的最近公共祖先
解题思路: Tarjan离线查找最近公共祖先:
搜到新的顶点,此顶点的临时祖先就是上一层的顶点
直到搜到叶子就开始回溯,回溯的时候
从这点出发搜过的顶点的临时祖先合并为这个顶点的上一层顶点
代码:
//Final LCA离线算法求最近公共祖先
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <vector>
#define MAX 11000
using namespace std;
vector<int>Hash[MAX],Qes[MAX];
int n,m,visit[MAX],ansetor[MAX],parent[MAX],fathernum[MAX];
void Init(int n) //并查集初始化
{
for(int i=1;i<=n;i++)
parent[i]=i;
}
int Find(int x) //并查集查找和压缩路径
{
int s,j;
s=x;
while(x!=parent[x])
x=parent[x];
while(s!=x)
{
j=parent[s];
parent[s]=x;
s=j;
}
return x;
}
void Union(int r1,int r2) //并查集合并
{
int R1,R2;
R1=Find(r1);
R2=Find(r2);
if(R1!=R2)
parent[R1]=R2;
}
void LCA(int u) //LCA
{
int i,size;
visit[u]=1;
ansetor[u]=u;
size=Hash[u].size();
for(i=0;i<size;i++) //size()从0开始计算
{
if(!visit[Hash[u][i]])
{
LCA(Hash[u][i]);
Union(u,Hash[u][i]);
ansetor[Find(Hash[u][i])]=u;
} //***可以是Find(u)或者Find(Hash[u][i]),因为已经合并了
}
size=Qes[u].size();
for(i=0;i<size;i++) //size()从0开始计算
{
if(visit[Qes[u][i]]) //如果需要查找的两个点其中一个点之前被访问过,
//那么此时它的祖先就是它们的最近公共祖先
{
m=ansetor[Find(Qes[u][i])]; //***只能是Find(Qes[u][i]),因为此时u和Qes[u][i]并未合并
return ;
}
}
}
int main()
{
int a,b,i,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
Init(n);
memset(visit,0,sizeof(visit));
memset(fathernum,0,sizeof(fathernum));
for(i=1;i<=n;i++)
{
Qes[i].clear();
Hash[i].clear();
}
for(i=1;i<=n-1;i++)
{
scanf("%d%d",&a,&b);
Hash[a].push_back(b); //表示a是b的父亲
fathernum[b]++; //记录每个顶点父亲的个数
}
scanf("%d%d",&a,&b);
Qes[a].push_back(b); //需要查找的两点
Qes[b].push_back(a); //需要查找的两点
for(i=1;i<=n;i++)
{
if(!fathernum[i]) //没有父亲结点的点既是整棵树的根节点
{
LCA(i);
printf("%d\n",m);
break;
}
}
}
return 0;
}