1. 树的基础

数据结构中可以用这种struct表示

struct Node
{
    Node * lnode;
    Node * rnode;
    int c;
}tree[101];

三种遍历


void PostOrder(Node * T)
{
    if (T->lnode != NULL)
    {
        PostOrder(T->lnode);
    }

    if (T->rnode != NULL)
    {
        PostOrder(T->rnode);
    }

    printf("%d ", T->v);
}


void InOrder(Node * T)
{
    if (T->lnode != NULL)
    {
        InOrder(T->lnode);
    }

    printf("%d ", T->v);

    if (T->rnode != NULL)
    {
        InOrder(T->rnode);
    }
}


void PreOrder(Node * T)
{

    printf("%d ", T->v);

    if (T->lnode != NULL)
    {
        PreOrder(T->lnode);
    }

    if (T->rnode != NULL)
    {
        PreOrder(T->rnode);
    }
}

典型问题,已知两种遍历,求另外一种遍历

题目1078:二叉树遍历
时间限制:1 秒 内存限制:32 兆 特殊判题:否提交:3512解决:2126 题目描述:
二叉树的前序、中序、后序遍历的定义: 前序遍历:对任一子树,先访问跟,然后遍历其左子树,最后遍历其右子树;
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树; 后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
ABC BAC FDXEAG XDEFAG
两个字符串,其长度n均小于等于26。 第一行为前序遍历,第二行为中序遍历。
二叉树中的结点名称以大写字母表示:A,B,C….最多26个结点。 输出: 输入样例可能有多组,对于每组测试样例,
输出一行,为后序遍历的字符串。
样例输出: BCA XEDGAF
来源:
2006年清华大学计算机研究生机试真题
http://ac.jobdu.com/problem.php?pid=1078

#include <iostream>
#include <string>
#include <vector>
#include <cstdio>
#include <algorithm>

using namespace std;

vector<char> pre;
vector<char> In;


struct Node
{
    Node * lnode;
    Node * rnode;
    char v;
};


Node * build(vector<char>::iterator prebegin, vector<char>::iterator preend,
                vector<char>::iterator inbegin, vector<char>::iterator inend)
{
    Node * r = new Node();
    r->lnode = NULL;
    r->rnode = NULL;

    char value = *prebegin;

    vector<char>::iterator pos = find(inbegin, inend, value);
    vector<char>::difference_type leftTree = pos - inbegin;
    vector<char>::difference_type rightTree = inend - pos - 1;

    if (leftTree > 0)
    {
        r->lnode = build(prebegin + 1, prebegin + leftTree + 1, pos - leftTree, pos);
    }

    if (rightTree > 0)
    {
        r->rnode = build(prebegin + leftTree + 1, preend, pos + 1, inend);
    }

    r->v = value;

    return r;
}


void back(Node * tree)
{
    if (tree->lnode != NULL)
    {
        back(tree->lnode);

    }

    if (tree->rnode != NULL)
    {
        back(tree->rnode);
    }

    printf("%c", tree->v);
}



int main()
{
    string pres;
    string ins;
    while (cin >> pres >> ins)
    {
        for (string::size_type i = 0; i < pres.size(); i++)
        {
            pre.push_back(pres[i]);
            In.push_back(ins[i]);
        }
        Node * tree = build(pre.begin(), pre.end(), In.begin(), In.end());
        back(tree);
        printf("\n");
        pres.clear();
        ins.clear();
        pre.clear();
        In.clear();
    }
    return 0;
}

必须知道中序遍历才能唯一确定这个树

即, 只知道前序和后序是没法确定一棵树的

2. 哈夫曼树

Huffman tree

给定n个权值作为n的叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

在C++中,基本可以用priority_queue代替

#include <queue>
#include <functional>

priority_queue<int> Q//大顶堆
Q.push(x);
int a = Q.top();
Q.pop();

priority_queue<intvector<int>, greater<int> > Q;//小顶堆

搬水果问题

题目描述:
在一个果园里,小明已经将所有的水果打了下来,并按水果的不同种类分成了若干堆,小明决定把所有的水果合成一堆。每一次合并,小明可以把两堆水果合并到一起,消耗的体力等于两堆水果的重量之和。当然经过 n‐1 次合并之后,就变成一堆了。小明在合并水果时总共消耗的体力等于每次合并所耗体力之和。
假定每个水果重量都为 1,并且已知水果的种类数和每种水果的数目,你的任务是设计出合并的次序方案,使小明耗费的体力最少,并输出这个最小的体力耗费值。例如有 3 种水果,数目依次为 1,2,9。可以先将 1,2 堆合并,新堆数目为3,耗费体力为 3。然后将新堆与原先的第三堆合并得到新的堆,耗费体力为 12。所以小明总共耗费体力=3+12=15,可以证明 15 为最小的体力耗费值。
输入:
每组数据输入包括两行,第一行是一个整数 n(1<=n<=10000),表示水果的种类数,如果 n 等于 0 表示输入结束,且不用处理。第二行包含 n 个整数,用空格分隔,第 i 个整数(1<=ai<=1000)是第 i 种水果的数目。
输出:
对于每组输入,输出一个整数并换行,这个值也就是最小的体力耗费值。输入数据保证这个值小于 2^31。
样例输入:
3
9 1 2
0
样例输出:
15
来源:
2011年吉林大学计算机研究生机试真题

http://ac.jobdu.com/problem.php?pid=1107


#include <iostream>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <functional>


using namespace std;

int main()
{


    int n;
    priority_queue<int, vector<int>, greater<int> > q;
    while (cin >> n && n != 0)
    {
        while (!q.empty())
        {
            q.pop();
        }
        for (int i = 0; i < n; i++)
        {
            int tmp;
            cin >> tmp;
            q.push(tmp);
        }

        int sum = 0;

        for (int i = 0; i < n - 1; i++)
        {
            int num1 = q.top();
            q.pop();
            int num2 = q.top();
            q.pop();
            int snum = num1 + num2;
            sum += snum;
            q.push(snum);
        }

        cout << sum << endl;

    }
    return 0;
}

3.二叉排序树

二叉排序树(Binary Sort Tree)又称二叉查找树(Binary Search Tree),亦称二叉搜索树。

二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
(4)没有键值相等的节点。

构造二叉排序树

题目描述:
输入一系列整数,建立二叉排序数,并进行前序,中序,后序遍历。
输入:
输入第一行包括一个整数n(1<=n<=100)。
接下来的一行包括n个整数。
输出:
可能有多组测试数据,对于每组数据,将题目所给数据建立一个二叉排序树,并对二叉排序树进行前序、中序和后序遍历。
每种遍历结果输出一行。每行最后一个数据之后有一个空格。
样例输入:
5
1 6 5 9 8
样例输出:
1 6 5 9 8
1 5 6 8 9
5 8 9 6 1
提示:
输入中可能有重复元素,但是输出的二叉树遍历序列中重复元素不用输出。
来源:
2005年华中科技大学计算机保研机试真题


#include <iostream>
#include <cstdio>
#include <vector>
#include <string>

using namespace std;


struct Node
{
    Node * lnode;
    Node * rnode;
    int v;
}t[101];

int loc;

Node * create()
{
    t[loc].lnode = t[loc].rnode = NULL;
    return &t[loc++];
}

Node * Insert(Node * T, int x)
{
    if (T == NULL)
    {
        T = create();
        T->v = x;
    }
    else if (x < T->v)
    {
        T->lnode = Insert(T->lnode, x);
    }
    else if (x > T->v)
    {
        T->rnode = Insert(T->rnode, x);
    }

    return T;
}

void PostOrder(Node * T)
{
    if (T->lnode != NULL)
    {
        PostOrder(T->lnode);
    }

    if (T->rnode != NULL)
    {
        PostOrder(T->rnode);
    }

    printf("%d ", T->v);
}


void InOrder(Node * T)
{
    if (T->lnode != NULL)
    {
        InOrder(T->lnode);
    }

    printf("%d ", T->v);

    if (T->rnode != NULL)
    {
        InOrder(T->rnode);
    }
}


void PreOrder(Node * T)
{

    printf("%d ", T->v);

    if (T->lnode != NULL)
    {
        PreOrder(T->lnode);
    }

    if (T->rnode != NULL)
    {
        PreOrder(T->rnode);
    }
}

int main()
{
#ifdef DEBUG_HAO
    freopen("in.txt", "r", stdin);
#endif

    int n;
    while (cin >> n)
    {
        loc = 0;
        Node * T = NULL;
        for (int i = 0; i < n; i++)
        {
            int x;
            scanf("%d", &x);
            T = Insert(T, x);
        }

        PreOrder(T);
        printf("\n");
        InOrder(T);
        printf("\n");
        PostOrder(T);
        cout << endl;

    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值