文章题目:Land Cover Change Detection Techniques
作者:ZHIYONG LV,TONGFEI LIU
简介:超高分辨率遥感图像地面覆盖变化检测综述
VHR有高空间分辨率但光谱信息有限,存在类内差异高类间差异低的问题。
高分辨率未必有高精度的原因:
VHR图像与中低分辨率图像相比有更高的类内差距
在空间分辨率方面,VHR图像中每个像素的大小要小于中低分辨率图像,并且在VHR图像中像素之间的连接紧密(?)
多时相VHR检测图中多使用椒盐噪声
VHR双时相光学图像LCCD的工作流程总体包括预处理步骤、邻域上下文探索、LCCD结果和性能评估三个主要部分。
预处理:
目的:减少几何位置误差和光谱反射率物候差异引起的伪变化。
步骤:几何校正和辐射校正
几何校准: 消除配准错误带来的噪声。
成本高。
辐射校正: 放射测量协同修正?(辐射校正)radiometric cocorrection
消除伪变化
但仍没有定量分析变化检测结果中的辐射共校正误差。
邻域上下文探索:
目的:利用空间相关性提升VHR图像LCCD的性能
目前未存在严格的方法分类标准
本文按照利用空间信息的方式分为四类:

REGULAR NEIGHBORING CONTEXT(规则邻域上下文)
通过使用规则几何或严格的数学模型来探索相邻像素的上下文特征
规则几何:DL通过将图像对划分成规则的块来利用上下文信息,且可以通过深度变化向量分析和归一化惯性矩特征来提取深层的图像特征。
数学模型:获得中心像素周围的不变性特征,测量两两图像之间的变化幅度。
评价:
直观有效,便于实现
利用空间上下文信息的规则形状有模糊拓扑接触目标之间边界的趋势,因为它们在地理区域内的形状和大小不同。
在为给定的双时间图像探索上下文信息时,确定相邻几何图形的最佳大小或数学模型或深度学习技术的最佳参数组是耗时的。
无法覆盖各种形状和大小的地面目标。
MULTISCALE NEIGHBORING CONTEXT(多尺度邻域上下文)
用多尺度目标、多尺度深度学习技术以及层次尺度方法挖掘上下文信息
基于目标的方法:此技术中,目标被定义为一组拥有光谱同质性和空间连续性的像素。在应用基于目标的LCCD技术前要进行多尺度分割(先决条件),基于对象的LCCD方法的进步依赖于降低噪声和保持边界,而多尺度分割算法的参数设置依赖经验,且容易丢失次要变化目标,两个时相的图像如何保持分割的一致性也存在困难。
深度学习网络:基于深度学习的LCCD方法具有避免变化幅度图像生成的优点。因此,确定二值阈值将变化幅度图像划分为二值变化检测图是可选的,因为深度学习技术可以直接从训练样本中学习“变化”和“不变”模型。尽管通过旋转样本的方向来实现和扩展训练样本的规模可以提高网络的鲁棒性和性能,但在检测图中仍然保持了图像块规则形状的负面影响。性能依赖足够大的训练集。标注数据集成本高。
多尺度层次LCCD框架提供的可能方向:
与单尺度特征相比,基于层次尺度特征构建向量可以提高检测精度。
通过对形态学操作参数赋值,可以利用多尺度邻近信息。
挖掘和融合不同尺度或时间尺度的特征有利于提高VHR遥感图像的检测性能。
ADAPTIVE NEIGHBORING CONTEXT(自适应邻域上下文)
在自适应区域扩展中,中心像素与其相邻像素之间的光谱差应小于T1,种子像素周围的分配像素总数应小于T2。迭代扩展终止,直到其中一个约束规则不满足为止。一个中心像素和它的邻居之间的关系是用光谱相似度来衡量的。该关系用于确定自适应窗口大小、权重值或区域大小。相邻像素对中心像素的影响随着地面目标自身光谱反射的不同而不同。在实际应用中,通常需要对自适应尺度方法进行参数调优
OTHER METHODS FROM COMPUTER VISION(其他来自CV的方法)
从计算机视觉的角度来看,大量的研究集中在双时间图像的共配准上,以保证变化检测的质量和性能
LCCD结果和性能评估
两类变化检测图:二值变化检测图(shape,size,distribution)和多任务变化检测图(from-to-)
指标:

统计(方法、数据集)


由于山体滑坡和地震等土地覆盖灾害通常会导致地面高程的变形,双时相图像之间的配准变得具有挑战性。
LCCD机遇和挑战
辐射协同修正需要额外注意:辐射校正的效果需要进一步调查。LCCD中使用的双时相图像通常在不同的日期获得,其过程可能因太阳高度、大气条件甚至物候季节而有所不同综合分析时应考虑噪声的辐射协同校正,以促进方法的发展,减小LCCD中双时段图像的辐射差异。
针对不同分辨率的双时相图像在现实应用中有很大的吸引力
LCCD方法的自动化程度:算法的参数设置依赖经验,简化调参过程是挑战
变化趋势分析和预测将成为热点。