开源模型应用落地-语音转文本-whisper模型-AIGC应用探索(二)

本文介绍了OpenAI的Whisper模型在语音转文本的应用,详细阐述了Whisper模型的特性,并通过集成FastAPI构建服务,提供了对外的语音识别接口。实验结果显示,模型在中文识别上表现出一定差异,主要在标点符号处理上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

    语音转文本技术具有重要价值。它能提高信息记录和处理的效率,使人们可以快速将语音内容转换为可编辑、可存储的文本形式,方便后续查阅和分析。在教育领域,可帮助学生更好地记录课堂重点;在办公场景中,能简化会议记录工作。同时,该技术也为残障人士提供了便利,让他们能更方便地与外界交流。此外,对于媒体行业、客服行业等都有着广泛的应用,极大地提升了工作流程和服务质量。 

    本文将继续介绍OpenAI开源的Whisper语音识别模型,并集成FastAPI对外提供语音识别服务。


二、术语介绍

2.1. 语音转文本

    也称为语音识别或自动语音识别 (ASR)是一种将语音音频转换为文字的技术。它利用计算机程序和算法来监听语音输入,并将其转换为可读的文字输出。

2.2. Whisper

    Whisper is a pre-trained model for automatic speech rec

### 使用 `whisper-large-v3` 模型实现语音文本换 为了使用 `whisper-large-v3` 模型进行语音文本的任务,可以采用 Python 和 Hugging Face 的 Transformers 库来加载并应用模型。下面提供了一个详细的指南以及一段代码示例。 #### 安装必要的库 首先需要安装一些依赖项,包括 `transformers` 和 `torch`: ```bash pip install transformers torch ``` #### 加载预训练模型和分词器 接着通过 Hugging Face 提供的 API 来获取已经训练好的 `whisper-large-v3` 模型及其对应的分词器: ```python from transformers import WhisperProcessor, WhisperForConditionalGeneration processor = WhisperProcessor.from_pretrained("openai/whisper-large-v3") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3").to("cuda") # 如果有 GPU 支持的话 ``` #### 音频文件处理与特征提取 对于输入音频数据,则需将其化为适合喂给模型的形式。这里假设有一个名为 `audio.wav` 的 WAV 文件作为待处理对象: ```python import librosa def load_audio(file_path): audio_input, sample_rate = librosa.load(file_path, sr=16000) return processor(audio_input, sampling_rate=sample_rate, return_tensors="pt") input_features = load_audio("./example.wav").input_values.to("cuda") ``` #### 执行推理过程获得结果 最后一步就是调用模型来进行预测工作,并解码得到最终的文字输出: ```python predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] print(f"Transcribed text:\n{transcription}") ``` 上述方法适用于大多数情况下的语音文字需求[^1]。然而如果希望在资源受限设备上部署此功能,可能还需要考虑更高效的解决方案如 whisper.cpp 这样的 C++ 实现版本[^2]。
评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值