自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

JockerWong的笔记工厂

一个程序员的技术学习笔记

原创 numpy或tensor的一个切片技巧 —— [..., n]

前言 之前看一些代码时遇到这样的一段代码(如下所示)使用了一种比较奇怪的切片 […, 1:2],此文介绍了这种方式的意思和使用 ... box_xy = K.sigmoid(feats[..., :2]) box_wh = K.exp(feats[..., 2:4]) box_confidence...

2019-05-13 19:38:51

阅读数 198

评论数 0

原创 yolo原理与实现(训练和测试)

前言 之前谈的基础深度学习的模型一直都是分类,即给定一张图片分辨出图像是什么东西。而更有趣的是在目标检测领域,给定一张图片,不仅要分辨出图示的物体是什么,还要标注出目标的边框。我之前的博文写过一个手写数字分割的,大概的思想是将纸上的区域转为二值化数据,然后统计二值像素绘制成直方图得出行列的边界或者...

2019-05-09 21:34:37

阅读数 153

评论数 0

原创 纸张图像边框提取、摆正以及是否填写检测

前言 前面也分享过一些opencv的一些图像处理方式,那我今天介绍一个用opencv来提取合同、纸张或者证件的边框并去掉背景,将图像摆正的做法,然后也根据这个思路,介绍下校验是否填写,或者签名的一个思路。话不多说,来看下实现的效果图(图片是我无聊的时候乱写的纸,逃~),具体代码我会放在我的gith...

2019-05-03 12:50:03

阅读数 381

评论数 0

原创 非极大值抑制的计算方式

前言 最近一直在研究目标检测的算法,其中有个很重要的概念叫做非极大值抑制(Non-maximum suppression),其主要目的是为了消除多余的框,找到最佳的物体检测的位置。如定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。非极大值抑制:先假设有6个矩形框,根据分类...

2019-04-29 18:55:32

阅读数 39

评论数 0

原创 python-opencv的一些基本使用

前言 像我工作中会经常用到opencv的一些功能,这里做下使用笔记及一些重要函数的笔记 一、基本使用 import cv2 path = 'test.jpg' # cv2.IMREAD_GRAYSCALE 灰度图形式打开,cv2.IMREAD_COLOR 默认打开 image = cv2.imre...

2019-04-29 12:07:12

阅读数 58

评论数 0

原创 关于超参数调优及迁移学习的一些见解

前言 最近看了一本书《TensorFlow 实战google深度学习框架》,其中里面的在第6章中的6.5.2这个小结中,里面有这样的一个代码(具体我就不贴了),总之就是先通过图片数据输入成一个.npy文件,然后通过这个npy文件来输入到模型中。其实这种方法可以 针对一些特别小型的数据集,比如只有几...

2019-04-25 13:44:53

阅读数 148

评论数 0

原创 手写数字的分割和识别

前言 在机器学习领域,手写数字数据集MNIST之于机器学习几乎相当于HelloWorld之于编程语言,其重要地位不言而已。但是,然后呢?给你一张如下所示的图片,你的模型能否也预测出结果?(其实下面这个应用就是OCR领域的内容了,另详细的代码内容和注释可以参考我的github https://git...

2019-04-08 11:41:23

阅读数 692

评论数 0

原创 几种卷积神经网络

前言 深度学习在计算机视觉(computer version)领域非常成功,举个简单的例子——让计算机分辨图片的上的动物是猫还是狗是非常难以实现的事情,但是借助于 卷积神经网络(CNN) 这是非常容易实现的事情。卷积神经网络是本章介绍的重点,在这篇博文中我将结合一些简单的例子说明什么是卷积神经网络...

2019-04-01 17:35:16

阅读数 79

评论数 0

原创 二、深度学习的参数调优及优化

前言 一、正则化 1、数据集划分 2、什么是正则化及正则化的使用 3、正则化的实现 二、优化算法 1、几种梯度下降法 2、Momentum、Rmsprop及Adam优化算法 3、批量归一化(Batch norm) 4、几种优化算法的比较 三、总结 ...

2019-03-26 15:39:21

阅读数 177

评论数 0

原创 一、深度学习与神经网络

前言 一、神经网络及实现 1、什么是神经网络算法 2、激活函数及正向、反向传播算法 3、基于MNIST的算法实现(浅层) 二、深度神经网路 1、什么是深度神经网络算法 2、基于MNIST的算法实现(深层) 三、总结 ...

2019-03-19 18:45:25

阅读数 36

评论数 0

原创 《吴恩达机器学习》18 机器学习总结

前言 原机器学习最后一章的内容为 图片文字识别,但是笔者在看了这一章的课程之后发现其内容可能实际应用性不大,课程讲的ocr识别的方法已经不适合目前主流的算法(目前主流使用CNN——卷积神经网络),故省略这一章节的笔记,改为对整个机器学习课程的总结。 一、监督学习算法 1、线性回归 ...

2019-02-26 10:00:43

阅读数 224

评论数 0

原创 《吴恩达机器学习》17 大规模机器学习

大规模机器学习前言一、大数据集的学习二、几种梯度下降法1、批量梯度下降法2、随机梯度下降法3、小批量梯度下降法4、在线学习三、数据并行总结 前言 前面我们学习了机器学习一种最重要的优化方式——梯度下降法(也就是批量梯度下降法)这种方法很好的对我们的数据进行拟合,通过合适的代价函数来求解函数的权...

2019-02-25 11:22:04

阅读数 74

评论数 0

原创 《吴恩达机器学习》16 推荐系统

推荐系统前言一、基于内容的推荐系统1、问题描述2、推荐系统算法二、协同过滤三、低秩矩阵分解及均值归一化1、低秩矩阵分解2、均值归一化总结 前言 目前生活中我们用的互联网产品就会都会涉及到推荐系统,比如逛淘宝时浏览商品时推荐系统会记下用户的喜好,然后推荐同类型或者觉得你感兴趣的商品给你;浏览新闻...

2019-02-24 17:23:48

阅读数 170

评论数 0

原创 《吴恩达机器学习》15 异常检测

异常检测 前言一、高斯分布1、问题描述2、算法二、异常检测方法应用1、应用方式2、异常检测与监督学习比较3、特征选择三、多变量的高斯分布总结 前言 异常检测首先不是检测机器学习算法中的异常,也不是一个算法,它指的是一种应用场景(刚开始时我也陷入这两种猜测。。。)比如在工厂内生产一批零件,我们用...

2019-02-23 13:50:01

阅读数 112

评论数 0

原创 《吴恩达机器学习》14 降维(PCA算法)

降维(PCA算法)前言一、算法应用1、数据压缩2、数据可视化二、主成分分析(PCA)1、问题2、算法三、应用建议1、选择主成分的数量2、数据压缩还原3、应用总结 前言 这一章节开始介绍第二种非监督学习的算法——降维。所谓的降维顾名思义就是将多维数据降到低维数据的算法,降维方法分为线性和非线性降...

2019-02-22 10:14:23

阅读数 453

评论数 0

原创 《吴恩达机器学习》13 无监督学习(聚类)

无监督学习(聚类)前言一、K-均值算法1、定义2、优化目标二、使用技巧1、随机初始化2、选择聚类数总结 前言 前面我们介绍了线性回归,逻辑回归,SVM等都是监督学习的算法,下面我们来介绍第一个非监督学习的算法——聚类(Clustering)。在非监督学习中,我们需要将一系列无标签的训练数据,输...

2019-02-21 10:09:51

阅读数 144

评论数 0

原创 《吴恩达机器学习》12 支持向量机

支持向量机前言一、优化目标二、大间隔分类器1、直观理解2、数学原理三、核函数四、使用SVM总结 前言 到目前为止,我们已经见过一系列不同的学习算法。在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法 A 还是学习算法 B,而更重要的是,应用这些算法时,所创建的大量...

2019-02-20 15:13:01

阅读数 223

评论数 0

原创 《吴恩达机器学习》11 机器学习系统设计

机器学习系统设计前言一、首先要做什么二、误差分析三、查准率(Precision)和查全率(Recall)四、机器学习的数据总结 前言 一、首先要做什么 二、误差分析 三、查准率(Precision)和查全率(Recall) 四、机器学习的数据 总结 以上就是《吴恩达机器学习》系列视频...

2019-02-19 10:57:16

阅读数 50

评论数 0

原创 《吴恩达机器学习》10 应用机器学习的建议

应用机器学习的建议前言一、决定下一步做什么二、模型评估1、评估假设2、模型选择和交叉验证三、偏差和方差1、定义2、正则化3、学习曲线四、决定下一步做什么(revisited)总结 前言 一、决定下一步做什么 二、模型评估 1、评估假设 2、模型选择和交叉验证 三、偏差和方差 1、定义...

2019-02-18 11:44:20

阅读数 39

评论数 0

原创 《吴恩达机器学习》9 神经网络参数的反向传播算法

神经网络参数的反向传播算法前言一、代价函数二、反向传播算法三、综合应用总结 前言 一、代价函数 二、反向传播算法 三、综合应用 总结 以上就是《吴恩达机器学习》系列视频 神经网络参数的反向传播算法 的内容笔记,以便后续学习和查阅。 ...

2019-02-15 11:20:37

阅读数 130

评论数 3

提示
确定要删除当前文章?
取消 删除