假设在n进制下,下面的等式成立,567*456=150216,n的值是()。
A. 9 B.. 10 C. 12 D.18
解; 首先假设为n进制,根据进制公式得(5 n^2+6 n+7)*(4 n^2+5 n+6)=n^5+5*n^4+2*n^2+n+6
展开得 20 n^4+49 n^3+88 n^2+71 n+42=n^5+5*n^4+2*n^2+n+6
此时对展开的公式左右两边同时%n
得到42%n==6(1)
这时可以将B选项排除,发现A B D三个选项都符合!那么再创造一个等式,左右两边同时/n还会相等然后再%n
此时 (71+42/n)%n=(1+6/n)%n=1(2)
(71+42/n)%n=1(3)此时将A B D 带入公式(3)就可以求出答案。
小规律:当给出的数值较小(容易计算)时,我们可以将选项带入其中 求出答案。当数值较大时,公式(1)是比较重要的
所有的进制都是这样由个位两位数相乘%得到等式右边的个位数!这样也可以排除选项中的错误答案!