考试题(进制问题)

假设在n进制下,下面的等式成立,567*456=150216,n的值是()。

                 A. 9        B.. 10         C. 12         D.18 

解; 首先假设为n进制,根据进制公式得(5 n^2+6 n+7)*(4 n^2+5 n+6)=n^5+5*n^4+2*n^2+n+6

                                               展开得      20 n^4+49 n^3+88 n^2+71 n+42=n^5+5*n^4+2*n^2+n+6

                                                         此时对展开的公式左右两边同时%n

                                                                      得到42%n==6(1)

这时可以将B选项排除,发现A B D三个选项都符合!那么再创造一个等式,左右两边同时/n还会相等然后再%n

此时        (71+42/n)%n=(1+6/n)%n=1(2)

               (71+42/n)%n=1(3)此时将A B  D 带入公式(3)就可以求出答案。

小规律:当给出的数值较小(容易计算)时,我们可以将选项带入其中 求出答案。当数值较大时,公式(1)是比较重要的

所有的进制都是这样由个位两位数相乘%得到等式右边的个位数!这样也可以排除选项中的错误答案!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值