主要思想:分治
步骤:
- 确认分界点:q[l]、q[(l+r)/2]、q[r]、随机
- 调整范围
- 递归处理左右两端
第一种方法(想法简单,但是需要额外空间):
时间复杂度:
平均为nlogn,log是以2为底,最坏为n²,基本不会达到
每次划分不一定n/2,但是期望是n/2,层数的期望也是logn
更好的方法:
使用两个“指针”i、j分别指向左右两端,先从i位置开始,如果i位置元素小于等于x,则i++,直到i位置元素大于x,则看j位置元素,如果大于等于x,则j–,直到j位置元素小于x,则i、j两处元素交换位置。循环直到两个i≥j。
题目:
给定你一个长度为 n 的整数数列。
请你使用快速排序对这个数列按照从小到大进行排序。
并将排好序的数列按顺序输出。
输入格式
输入共两行,第一行包含整数 n。
第二行包含 n 个整数(所有整数均在 1∼109 范围内),表示整个数列。
输出格式
输出共一行,包含 n 个整数,表示排好序的数列。
数据范围
1≤n≤100000
输入样例:
5
3 1 2 4 5
输出样例:
1 2 3 4 5
#include <iostream>
using namespace std;
const int N = 1e6 + 10;
int n;
int q[N];
void quick_sort(int q[], int l, int r)
{
if (l >= r) return;//如果只有一个数或没有则返回
int x = q[l + r >> 1], i = l - 1, j = r + 1;
//数据已加强,若x取左右则会超时,所以中间或随机,指针先位于序列两侧
//x = rand() % (r - l + 1) + l;
while(i < j)
{
do i++; while (q[i] < x);
do j--; while (q[j] > x);
if (i < j) swap(q[i], q[j]);
}//结束时i==j
quick_sort(q, l, j);//quick_sort(q, l, i - 1);
quick_sort(q, j + 1, r);//quick_sort(q, i, r);
/*用j时x不能用右边界,用i时x不能用左边界,否则会出现死循环
用i则不能取到左边界,把x取值改成向上取整 x = q[l + r + 1 >> 1]
用j则不能取到右边界,把x取值改成向下取整*/
}
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", &q[i]);
//一般scanf和printf比cin cout快
//Java不要用scanf,用bufferread,快10倍20倍
quick_sort(q, 0, n - 1);
for (int i = 0; i < n; i++) printf("%d ", q[i]);
return 0;
}