一、索引数据结构
数据结构图形化
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
-
二叉树
左叶子节点<根节点<右叶子节点
-
红黑树(平衡二叉树)
● 概念:叶子节点高度<4,大于4则会自旋平衡
● 缺点:数据量大,红黑树高度太高,查询慢 -
B-Tree
叶节点具有相同的深度,叶节点的指针为空 所有索引元素不重复 节点中的数据索引从左到右递增排列
-
B+Tree(B-Tree变种)
非叶子节点不存储data,只存储索引(冗余),可以放更多的索引。叶子节点包含所有索引字段叶子节 点用指针连接,提高区间访问的性能
-
HASH表
不支持范围
二、InnoDB索引实现(聚集)
● 表数据文件本身就是按B+Tree组织的一个索引结构文件
● 聚集索引-叶节点包含了完整的数据记录
● 为什么InnoDB表必须有主键,并且推荐使用整型的自增主键?
● 为什么非主键索引结构叶子节点存储的是主键值?(一致性和节省存储空间)
三、联合索引结构(重要)
● (id,dept,date)按字段顺序排序