C#-串口-模拟量采集软件-3-前导(进制转换)

本文介绍了数字系统从古至今的发展,包括非位置化和位置化数字系统,如罗马数字、二进制、八进制和十六进制。详细阐述了二进制、八进制和十六进制之间的转换方法,以及如何将这些进制转换为十进制。通过实例展示了十进制转二进制、八进制和十六进制的具体步骤,帮助理解不同进制间的转换原理。
摘要由CSDN通过智能技术生成

进制转换:

数字系统的由来:
远古时代: 
非位置化数字系统:罗马数字。
位置化数字系统:二进制|八进制|十进制|十六进制

计算机只有通电和不通电两种状态(0/1)

十进制:10个可用符号表示一个数字;
0,1,2,3,4,5,6,7,8,9,10

二进制:用两个可用符号表示一个数字;
0,1

不同的位表示不同的表达方式。

例如:
百位  十位  个位
2        3        5
2*100+3*10+5*1
2*10^2+3*10^1+5*10^0

例如:
二进制->10进制
八位   四位  二位   个位
1          0     1        1
1*8 +  0*4 + 1*2 + 1*1
1*2^3 + 0*2^2 + 1*2^1 + 1*2^0
8 + 0 + 2+ 1= 11(10进制) 

八进制
用8个可用符号来表示一个数字;
0,1,2,3,4,5,6,7
0,1,2,3,4,5,6,7(10)

例如:
八进制转10进制
2             7              7
2*8^2   7*8^1   7*8^0
2*64     7*8        7*1
128       56         7      ->(128+56+7->191(10))

十六进制
用16个可用符号来表示一个数字;
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15(10)

例如:
十六进制转10进制
2             A                E
2*16^2  10*16^1  14*16^0
2*256     10*16      14*1
512         160          14  ->(512+160+14=686(10))


十进制 转 二进制
连除法
29(10)->11101(2)
具体过程:
=29
   /2 
=14       ->   1   (14余1)
   /2  
=7         ->   0   (7余0)
  /2  
=3         ->   1   (3余1)
  /2     
=1         ->   1   (1余1)
  /2      
=0         ->   1   (0余1)
后进行 反向排列 得出:11101

十进制转八进制
例如:
=900
      /8  ->余  4
=112
      /8 -> 余  0
=14
      /8 -> 余  6
=1 
      /8 -> 余  1
=0 
后进行 反向排列 结果:1604    

十进制转16进制
例如:
=2717
   /16   ->余13 ->D
=169
   /16   ->余9  
=10
    /16   ->余10 ->A
=0
后进行 反向排列 得出:A9D


二进制|八进制|十六进制
相互转换
由于2^3=8,所以每3位二进制可以转换为1位八进制
10 111 001(2) --> 271(8)


由于2^4=16,所以每4位二进制可以转换为1位16进制
1011 1001(2) --> B9(16)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值