题解 P2426 【删数】

本文详细解析了一道洛谷平台上的区间动态规划题目,通过定义状态dp[l][r]为区间[l,r]的最大答案,预处理操作价值,并利用状态转移方程实现高效求解。
摘要由CSDN通过智能技术生成

洛谷题目传送门

一眼看去:区间DP

数据范围:三重循环

好了不装B了,开始说正事

这题非常明显是区间DP。

按照惯例,先定义状态。

分析题目,发现除了区间左端点和右端点之外,什么也不需要加进状态里。因为显而易见除了区间左右端点,没有什么能够影响答案。

所以我们定义状态\(dp[l][r]\)为区间\([l,r]\)的最大答案。

这个“操作价值”可以两重循环预处理出来,所以用\(pre[l][r]\)代表删除区间\([l,r]\)的最大价值。非常明显的,甚至题目里已经直接写明白了, 其实不用预处理,现场算就行,反正是\(O(1)\)

\[pre[l][r]= \begin{cases} a[l], & \text {$l=r$} \\ |a[l]-a[r]|\times (r-l+1), & \text{$else$} \end{cases} \]

然后就是最重要的一步——状态转移方程。

题目里有一个操作,就是一个区间删除一些数,失去一些“潜在的”价值。那么把这个过程反过来,一个区间加上一些数,得到一些“潜在的”价值。答案就是区间\([1,n]\)的最大潜在价值。

可以得到:

\[dp[l][r]=\max_{i⊆[l,r-1]} \max (dp[l][i]+pre[i+1][r],pre[l][i]+dp[i+1][r]) \]

翻译成人话就是,一个区间的潜在价值,等于从左边删去一些数或者从右边删去一些数后再加上删去的数的价值的较大值。

知道了状态转移方程,代码就非常好写了。

AC Code:

#include <bits/stdc++.h> //赞美万能头!
using namespace std;
#define MAXN 105
int n,a[MAXN],dp[MAXN][MAXN],pre[MAXN][MAXN];
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        pre[i][i]=dp[i][i]=a[i];//因为题目中的特殊约定“如果只去掉一个数,操作价值为这个数的值。”
    }
    for(int len=2;len<=n;len++){
        for(int l=1;l<=n-len+1;l++){
            int r=l+len-1;
            pre[l][r]=dp[l][r]=abs(a[l]-a[r])*(r-l+1);//预处理,因为有可能最优方案是把区间[l,r]都删掉,所以要给dp[l][r]也赋值。
        }
    }
    for(int len=2;len<=n;len++){
        for(int l=1;l<=n-len+1;l++){
            int r=l+len-1;
            for(int i=l;i<=r-1;i++){
                dp[l][r]=max(dp[l][r],dp[l][i]+pre[i+1][r]);
                dp[l][r]=max(dp[l][r],pre[l][i]+dp[i+1][r]);//就是状态转移方程233
            }
        }
    }
    printf("%d\n",dp[1][n]);//输出总的“潜在价值”。
    return 0;
}

由于LZ非常菜,有可能有自以为是的地方,所以请在评论区无情的指出qwq

对于洛谷上的p1036题目,我们可以使用Python来解决。下面是一个可能的解法: ```python def dfs(nums, target, selected_nums, index, k, sum): if k == 0 and sum == target: return 1 if index >= len(nums) or k <= 0 or sum > target: return 0 count = 0 for i in range(index, len(nums)): count += dfs(nums, target, selected_nums + [nums[i]], i + 1, k - 1, sum + nums[i]) return count if __name__ == "__main__": n, k = map(int, input().split()) nums = list(map(int, input().split())) target = int(input()) print(dfs(nums, target, [], 0, k, 0)) ``` 在这个解法中,我们使用了深度优先搜索(DFS)来找到满足要求的列。通过递归的方式,我们遍历了所有可能的字组合,并统计满足条件的个。 首先,我们从给定的n和k分别表示字个和需要选取的字个。然后,我们输入n个字,并将它们存储在一个列表nums中。接下来,我们输入目标值target。 在dfs函中,我们通过迭代index来选择字,并更新选取的字个k和当前总和sum。如果k等于0且sum等于target,我们就找到了一个满足条件的组合,返回1。如果index超出了列表长度或者k小于等于0或者sum大于target,说明当前组合不满足要求,返回0。 在循环中,我们不断递归调用dfs函,将选取的字添加到selected_nums中,并将index和k更新为下一轮递归所需的值。最终,我们返回所有满足条件的组合个。 最后,我们在主程序中读入输入,并调用dfs函,并输出结果。 这是一种可能的解法,但不一定是最优解。你可以根据题目要求和测试据进行调试和优化。希望能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值