题意:给一个区间,表示这个区间贴了一张海报,后贴的会覆盖前面的,问最后能看到几张海报。
思路:
之前就不会离散化,先讲一下离散化:这里离散化的原理是:先把每个端点值都放到一个数组中并除重+排序,我们就得到了处理后的数组,现在我们只需要用二分查找端点值在整个数组的下标,这样就达到了离散化的目的,压缩了长度。因为这里很特殊,不能用一般的离散化去做,如果区间两端只差1,那么需要给这个区间再加一个值,这个其他题解讲到了。
这里的区间更新和上一题不太一样,有一些地方要注意一下
代码:
#include<queue>
#include<cstring>
#include<set>
#include<map>
#include<vector>
#include<iostream>
#include<algorithm>
#define ll long long
const int N=100005;
const int MOD=20071027;
using namespace std;
int lw[N],rw[N],x[N<<1],color[N<<2];
void push_down(int rt){
if(color[rt]!=-1){
color[rt<<1]=color[rt<<1|1]=color[rt];
color[rt]=-1;
}
}
void update(int rt,int l,int r,int L,int R,int co){ //l r为访问区间
if(L<=l && R>=r){
color[rt]=co;
return;
}
push_down(rt); //注意传值
int m=(l+r)/2;
if(L<=m){ //这里只能在L取等
update(rt<<1,l,m,L,R,co);
}
if(R>m){ //这里不能取等,取等时代入m+1就错了
update(rt<<1|1,m+1,r,L,R,co);
}
}
set<int> col;
void query(int l,int r,int rt){
if(color[rt]!=-1){
col.insert(color[rt]);
return;
}
if(l==r) return;
int m=(l+r)/2;
query(l,m,rt<<1);
query(m+1,r,rt<<1|1);
}
int main(){
int n,num,T;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
num=0;
for(int i=0;i<n;i++){
scanf("%d%d",&lw[i],&rw[i]);
x[num++]=lw[i];
x[num++]=rw[i];
}
sort(x,x+num);
int cnt=unique(x,x+num)-x; //去掉重复的点
for(int i=cnt-1;i>0;i--){ //相邻两数相差大于1,中间再添一个数
if(x[i]!=x[i-1]+1) x[cnt++]=x[i-1]+1;
}
sort(x,x+cnt);
memset(color,-1,sizeof(color));
for(int i=0;i<n;i++){ //离散化
int L=lower_bound(x,x+cnt,lw[i])-x;
int R=lower_bound(x,x+cnt,rw[i])-x;
update(1,0,cnt,L,R,i);
}
col.clear();
query(0,cnt,1);
printf("%d\n",col.size());
}
return 0;
}