Parallelogram Counting(POJ1971)

  http://poj.org/problem?id=1971

Description

There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.

Input

The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases. It is followed by the input data for each test case. 
The first line of each test case contains an integer n (1 <= n <= 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000. 

Output

Output should contain t lines. 
Line i contains an integer showing the number of the parallelograms as described above for test case i. 

Sample Input

2
6
0 0
2 0
4 0
1 1
3 1
5 1
7
-2 -1
8 9
5 7
1 1
4 8
2 0
9 8

Sample Output

5
6

Source

Tehran Sharif 2004 Preliminary

题意:
输入n个点的坐标,找出能组成多少个平行四边形。
思路:
用平行四边形的对角线交点是两对角线的中点这一性质解题(如有两条直线中点坐标相同则能组成一个平行四边形)。值得注意的是有多对直线有相同中点
的情况时要算出实际的数目sum+=(ans-1)*ans/2,其中ans是满足性质直线的个数。
代码如下:
  • #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include <cmath>
    #include <cstring>
    #include <string>
    #include<sstream>
    #include<set>
    #include <cstdlib>
    #include<map>
    using namespace std;
    
    struct point
    {
        int x;
        int y;
    }p[1005];
    struct point pm[1005*1005];
    struct point mind(struct point a,struct point b)//记录中任意两点中点坐标
    {
        struct point mind;
        mind.x=(a.x+b.x);
        mind.y=(a.y+b.y);
        return mind;
    }
    bool cmp(struct point a,struct point b)
    {
        if(a.x==b.x)
            return a.y<b.y;
        return a.x<b.x;
    }
    int main()
    {
        int T,n;
        cin>>T;
        while(T--)
        {
            int c=0,ans=1;
            memset(pm,0,sizeof(pm));
            memset(p,0,sizeof(p));
            cin>>n;
            for(int i=0;i<n;i++)
                cin>>p[i].x>>p[i].y;
            for(int i=0;i<n-1;i++)
            {
                for(int j=i+1;j<n;j++)
                {
                    pm[c++]=mind(p[i],p[j]);
                }
            }
            sort(pm,pm+c,cmp);
            int sum=0;
            for(int i=0;i<c-1;i++)
            {
                if(pm[i].x==pm[i+1].x&&pm[i].y==pm[i+1].y)//有中点相同的ans++
                    ans++;
                else
                    
                {
                    sum+=(ans-1)*ans/2;   // 转化为能组成的平行四边形的个数
                    ans=1;     //初始化ans为1
                }
            }
            cout<<sum<<endl;
        }
        return 0;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值