题目描述:
给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。
示例:
输入:nums = [-1,2,1,-4], target = 1
输出:2
解释:与 target 最接近的和是 2 (-1 + 2 + 1 = 2) 。
提示:
3 <= nums.length <= 10^3
-10^3 <= nums[i] <= 10^3
-10^4 <= target <= 10^4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/3sum-closest
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路:
看到这道题的第一想法是三个for循环嵌套,,这个肯定是不可能的。
所以要减少嵌套循环,直接 说 算法思路过程 吧。
这道题使用的双指针。
首先对 nums 数组进行排序,这步很关键,稍后说明;
固定第一个整数 ,下标为a,下标为b、c的值向后边寻找,
因为排了序,所以 bc 两个下标指针分别从 a 的下一位和最后一位向中间靠拢。这样就省下了一层循环。也是排序的重要之处,从O(N3)降到了O(N2)。
然后对于重复重现的abc,可以直接跳过,例如[1,1,1,3,4,5,6,7];
当 a 为0, 1,2时nums[a]都为一,bc向后循环,最后得到的相加和 不会有更大差别,第一个 a 得到最接近 target 的值,后续两个最多也是得到那个值,不会更接近。
另一个,当得到相加和为 target ,直接返回,不会比本身更接近了。
反思错误:
没想到这种办法,好久没做算法,不能灵活思考了。,
看了解析之后(没看代码),自己尝试写了下,在 for 循环a的时候,while判断 nums[a] 重复出现的条件没有判断 a<len-2 ,结果越界了。
后来想了下,这种while循环还需要再次判断 a 的最大值范围,反而提高了时间耗费。所以不如 在循环中continue。
Java代码:
class Solution {
public int threeSumClosest(int[] nums, int target) {
Arrays.sort(nums);//排序
int len = nums.length;
int ans = 10000;
for(int a=0;a<len-2;++a){
if(a>0 && nums[a]==nums[a-1])continue;//重复出现 跳过
//while(a>0 && a<len-2 && nums[a]==nums[a-1]) ++a;//值相同,就继续往后
int b = a+1,c = len-1;
while(b<c){
int sum = nums[a]+nums[b]+nums[c];//当前求和
if(sum==target)return target;//直接返回
/* 三元比if-else理论上效率高,但是实际上不会 */
ans = Math.abs(sum-target)<Math.abs(ans-target)?sum:ans;
if(sum>target){
--c;
while(b<c && nums[c]==nums[c+1]) --c;//重复出现 跳过
}
if(sum<target){
++b;
while(b<c && nums[b]==nums[b-1]) ++b;//重复出现 跳过
}
}
}
return ans;
}
}