[学习笔记][算法]算法小技巧(Java)(添加中...)

1、最大公约数-欧几里得算法(辗转相除法)

就是辗转相除法的实现。

//计算a、b的最大公约数
int gcd(int a,int b){
	return b==0?a:gcd(b,a%b);
}

2、最小公倍数

int lcm(int a,int b){
	return (a*b)/gcd(a,b);
}
int gcd(){...}//最大公约数 函数

3、快速幂 O(logn)

假设求 35(xy),把指数换成二进制,就成了 3101
我们从后向前遍历指数,

  1. 首先是 1 (二进制与运算 y&1 ,判断当前位是1还是0),代表结果res 需要乘 31 ,直接用 res *= x;同时让 y 右移一位(y >>= 1);同时 x *=x (因为下一位 是x2
  2. 第二位是 0 ,无需对 res 运算,直接执行 y 右移;x 扩增( x *= x 因为下一位是 初始x4
  3. 第三位是 1,res *= x 【此时的 x 已经是初始的4次了】;y >>=1 ;x *= x;

三个循环 结束,相比将连续乘 少了两次。

//求x^y,(费马小定理求 1/a 模 p 的逆元 qpom(a,p-2,p))
long qpom(long x, long y, long mod){
	long res = 1l;
	while(y!=0){
		if((y&1)==1)res = res*x%mod; //%mod,添加mod在这里;PS:&优先级小于==,加括号
		y >>= 1;
		x = x*x%mod;//%mod,添加mod 
	}
	return res;
}

4、矩阵快速幂

矩阵x 的 y次,
首先是矩阵和矩阵的乘法规则,a * b 要 ((a的第一行 乘以 b的第一列) 的和) 作为 结果矩阵的第一行一列的值。
剩余快速幂和之前一样,只不过乘法变成了,乘矩阵。(矩阵乘法支持乘法结合律)

//a*b
int[][] Matrix(int[][] a,int[][] b){
    int n=a.length;
    int[][] temp=new int[n][n];
    for(int i=0;i<n;++i)
        for(int j=0;j<n;++j)
            for(int k=0;k<n;++k)
                temp[i][j]=temp[i][j]+a[i][k]*b[k][j];//%mod
    return temp;
}
//qpom x^y
int[][] qpom(int[][] x,int y){
    int[][] res=new int[x.length][x.length];
    for(int i=0;i<x.length;++i)res[i][i]=1;
    while(y!=0){
        if((y&1)==1)res=Matrix(res,x);
        y>>=1;
        x=Matrix(x,x);
    }
    return res;
}

5、最大的 不大于A的 B的倍数

有点绕嘴,求 最大的不大于16的3的倍数,答案应该是15。
15是 (小于16的 (3的倍数))里最大的。

int c = A/B*B;

PS:在java中 A%B == A-A/B*B

6、求组合数 C n m C_n^m Cnm

首先 C n m C_n^m Cnm = C n n − m C_n^{n-m} Cnnm,可以减少 操作次数
C n m C_n^m Cnm = n ∗ ( n − 1 ) ∗ ( n − 2 ) ∗ . . . ∗ ( n − m + 1 ) 1 ∗ 2 ∗ 3 ∗ . . . ∗ m {n*(n-1)*(n-2)*... *(n-m+1)}\over{1*2*3*... *m} 123...mn(n1)(n2)...(nm+1) = n 1 n\over 1 1n * n − 1 2 n-1\over 2 2n1 * … * n − m + 1 m n-m+1\over m mnm+1 =

long C(long n, long m){
	if(m>n-m) m=n-m;
	long res = 1l;
	for(int i=1;i<=m;++i,--n){
		res = res*n/i;
	}
	return res;
}

7、求 k p k^p kp 有多少位

1 0 n 10^n 10n 的位数是 n+1 位,例如 1 0 2 10^2 102 为100,有三位(1、0、0);
k ,可以写成 1 0 l o g 10 k 10^{log_{10}k} 10log10k
这样 k p k^p kp = ( 1 0 l o g 10 k ) p (10^{log_{10}k})^p (10log10k)p = 1 0 p ∗ l o g 10 k 10^{p*log_{10}k} 10plog10k,所以位数是 1 + p ∗ l o g 10 k {1+p*log_{10}k} 1+plog10k
PS:这个和进制没关系,因为二进制的2,写成也是“10”,八进制的八也是“10”,最后的效果一样。

int cnt = (int)(p*Math.log10(k)+1);

假如 k 是十进制,但是求 转化成m进制 的位数。参考上方,变成 m p ∗ l o g m k m^{p*log_{m}k} mplogmk

int cnt = (int)(p*(Math.log(k)/Math.log(m))+1);

8、Eluer 欧拉素数筛

任何一个合数都能分解成一个质数乘另一个数
所以筛质数时,可使用这项筛除之后出现的合数。

boolean[] noPrime = new boolean[num+1];//合数为true,num是筛[2,num]之间的素数
int[] prime = new int[num+1];//存储素数
int EluerTop = 0;//prime的边界,因为会有多余零

void Eluer(int num){
	for(int i=2;i<=num;++i){//因为从素数合数最小就是2
		if(!noPrime[i]) prime[EluerTop++] = i;//添加素数
		for(int j=0;j<EluerTop;++j){
			if(i*prime[j] > num) break;//超出范围,直接停下
			noPrime[i*prime[j]] = true;//合数为true
			if(i%prime[j] == 0) break;//避免重复给一个合数赋值。就拿4%2==0来说,在这之前可定有3*2=6这个合数,那么4*3可以为6*2,就没必要在这步给12赋值了。
		}
	}
}

9、位运算快速求一个正整数 二进制下1的个数

可以假设一下,二进制10100减去1,就是把低位上第一个1和后边的零进行了取反,变成10011,
此时两数与运算 得到10000,
去掉了低位第一个1,也就是说有一个1,
那么只要与运算结果不为零,就继续下去

int getCnt(int num){
	int cnt = 0;
	while(num != 0){
		num &= num - 1;//num=(-num^num)&num; 不用加减的纯位运算
		/**
		 * 这里需要说一下-num的问题,不是单纯符号位取反!!!
		 * 举例:-1 为 11111111111111111111111111111111
		 * 因为 -1 + 1 = 0,二进制0为0000...00,1为0000...01,
		 * 由此可知-1为1111...11
		 * 只有这样 -1 + 1才能一直进位 把所有1 变成0,
		 **/
		++cnt;
	}
	return cnt;
}

10、位运算 判断一个数能否被二整除

boolean can(int num){
	return (num&1)==0;//注意==优先级大于&,加括号
}

11、原地算法(不使用额外空间 交换两个数)

位运算异或 ^,相同为0,不同为1;
以下的代码,可以自己画两个圈圈,取交集啥的。

void swap(int a,int b){//假交换,没有改变传入值,这里只是演示
	a = a^b;//此时a是1的位置为ab的不相交部分
	b = a^b;//此时b是1的位置为a的部分
	a = a^b;//实现交换
}

注意!当两者为同一个变量时,原地算法为零。举例:

  • int[] a = new int[]{1,2};swap(a[0],a[0]);交换中a[0]变为零。
  • int a=1,b=1;swap(a,b);只是值相同,并非同一个变量时 没有影响,结果都还是1。

12、位运算 计算从1到n连续异或运算的值 O(1)

看着代码研究一天没明白,看了网上的解析:
首先是几个理论:

  1. 0异或任何值,都是那个值本身。
  2. ^满足交换律和结合律
  3. 连续的异或,看相同位数的1的个数,偶数个最后此位为0,奇数为1。举例
    1(001)
    2(010)
    3(011)
    4(100)
    最低位有两个 ,中间有两个,最高位有一个,所以异或结果为4(100)
  4. k>1,从1连续异或到 2 k − 1 2^k-1 2k1,结果为 0 0 0(可以试试,因为对应1位置的个数都是偶数)

定义: f ( m , p ) f(m,p) f(m,p)= m m m^ ⋯ \cdots ^ p p p (从m异或到p)
我们需要计算 f ( 1 , n ) f(1,n) f(1,n)

假设n>=4, f ( 0 , n ) = f ( 0 , 2 k − 1 ) f(0,n)=f(0,2^{k}-1) f(0,n)=f(0,2k1) ^ f ( 2 k , n ) , k > 1 f(2^{k},n) ,k>1 f(2k,n)k>1
前边理论1234,使得上式 = 0 =0 =0 ^ f ( 2 k , n ) = f ( 2 k , n ) f(2^{k},n)=f(2^{k},n) f(2k,n)=f(2k,n)
之间有 m = n + 1 − 2 k m=n+1-2^k m=n+12k个数,相当于二进制最高位第(k+1)位有m个(写写二进制就知道了)

  1. 假如n为奇数,那么m为偶数,最高位异或完是0。 f ( 2 k , n ) = f ( 0 , n − 2 k ) f(2^{k},n)=f(0,n-2^k) f(2k,n)=f(0,n2k)
    n − 2 k n-2^k n2k为与 n n n的相同,递推下去,得到 = f ( 0 , n =f(0,n =f(0,n% 4 ) 4) 4)
  2. n为偶数,m就为奇数,说明最高位是1,相当于上式基础再多异或一个 2 k 2^k 2k f ( 2 k , n ) = f ( 0 , n − 2 k ) f(2^{k},n)=f(0,n-2^k) f(2k,n)=f(0,n2k) ^ 2 k = f ( 0 , n 2^k=f(0,n 2k=f(0,n% 4 ) 4) 4) ^ 2 k 2^k 2k,然后其他的和上边一样

综上:
f ( 1 , n ) = f ( 0 , n ) = f(1, n) = f(0, n) = f(1,n)=f(0,n)=

n , n n,n nn% 4 = = 0 4 == 0 4==0

1 , n 1,n 1n% 4 = = 1 4 == 1 4==1

n + 1 , n n +1, n n+1n% 4 = = 2 4 == 2 4==2

0 , n 0 , n 0n% 4 = = 3 4 == 3 4==3

int oneToN(int n){
	int t = n&3;
	if((t&1)==1)return t>>1^1;
    return t>>1^n;
}

13、欧拉函数

在数论,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。

int phi(int n) {
	int m = (int) Math.sqrt(n + 0.5);
	int res = n;
	for(int i=2;i<=m;++i) {
		if(res%i==0) {
			res *=(i-1)/i;
			while(n%i==0)n/=i;
		}
	}
	if (n>1)res*=(n-1)/n;
	return res;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值