Dify+deepseek+工作流,通过文档提取实现文档合规性检查

1.概述

通过工作流 ,可视化界面快速构建复杂的工作流和自动化流程。结合文档识别技术和工作流引擎,可以实现文档的自动识别、数据提取后对比知识库的信息,提示文档的内容是否正确,减少认为判断错误的误差。

2.需求分析

  • 文档提取:自动从PDF文档中提取关键信息(本文是维修单,包含设备名称、规格型号、所属部门等信息)。
  • 数据验证:对提取的数据与知识库进行比对,知识库包含设备的一些基本信息,对错误信息进行提示,确保其准确性和完整性

3.技术选型

deepseek+Dify

4. 实现步骤

4.1 设计工作流

step1 创建开始节点 字段类型选择单文件,支持的文件类型选文档

step2 点击+号,选择知识检索

step3 点击+号,选择LLM,提示词为

step4 点击+号,选择知识检索,点击+号选择已经上传的知识库,本实例的知识库是设备维修说明书

step5 选择LLM,这个节点主要处理json数据和知识库的内容进行比对

step6 运行,上传维修单,输出结果

内容概要:本文档详细介绍了Dify应用开发平台的部署流程。Dify作为一个结合了BaaS与LLMOps理念的开源大语言模型应用开发平台,主要面向开发者及希望参与AI应用构建的人群。部署前,需保证系统已装好docker和git,这是用于拉取项目代码和运行环境的基础工具。具体部署操作分为几步执行:首先是新建dify文件夹作为存放项目的主目录,在此之下利用git指令从指定的GitHub地址克隆整个Dify源代码下来;其次是在获取的项目根路径找到docker相关脚本所在位置,依次复制配置示例环境变量,借助docker compose来一键启动所有的组件。一旦发现控制台提示共有九个容器均处于健康运转状态便标志着Dify部署完成。部署完毕后,访问浏览器输入特定URL即可打开初始设置页面录入管理后台账号基本信息,从而开始Dify之旅。 适用人群:对快速创建基于大语言模型的生成式AI应用感兴趣的初学者或者有一定编程经验想要深入定制或拓展该平台功能的技术爱好者。无论是IT专业人员还是非技术人员都可以从中受益并且参与到应用程序定义及其相关的数据运营管理工作中。 使用场景及目标:适用于那些想要在本地环境中试用或是进行自定义开发的企业内部研究团队或者个人开发者。其目的在于使用户能够脱离复杂的云服务搭建出一套完整的AI解决方案原型系统以便进行演示和技术验证活动。 其他说明:部署指南提供了详细的命令行操作指导,每一步都有明确指示。需要注意的是部署过程中可能涉及到较长时间等待,特别是第一次拉起全部服务时。另外还提到若无法通过命令获取代码可选择直接下载预先打包好的版本。对于网络条件不是很好或者是遇到了技术难题的情况下不失为一种折衷方法。同时提醒初次使用的用户务必牢记创建超级管理员账户所需的认证凭证资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值