import cv2
import numpy as np
from scipy import ndimage
import matplotlib.pyplot as plt
from tqdm import tqdm
def _neighbors_conv(image):
image = image.astype(np.int32)
k = np.array([[255, 255, 255], [255, 0, 255], [255, 255, 255]])
neighborhood_count = ndimage.convolve(image, k, mode='constant', cval=1)
neighborhood_count[~image.astype(np.bool_)] = 0
# print(neighborhood_count)
return neighborhood_count
def spur(image):
return _neighbors_conv(image) > 255
def bwmorph(image, fn, n=1):
for _ in range(n):
image = fn(image)
return image
t = [[0, 0, 0, 0],
[0, 0, 1, 0],
[0, 1, 0, 0],
[1, 1, 0, 0]]
t = np.array(t)
print('neighbor count:')
print(_neighbors_conv(t))
print('after spur:')
print(bwmorph(t, spur).astype(np.int_))
opencv提取骨架找端点,根据端点去掉毛刺
最新推荐文章于 2024-11-28 00:14:52 发布
该代码示例展示了如何使用Python的科学计算库scipy.ndimage进行邻域计数以及应用二值形态学操作,如消除尖刺。函数`_neighbors_conv`实现了邻域像素计数,`spur`检测并移除尖刺,`bwmorph`则执行多次形态学变换。通过一个4x4的矩阵示例,演示了这些函数的效果。
1796

被折叠的 条评论
为什么被折叠?



