sparkstreaming + kafka如何保证数据不丢失、不重复

本文探讨了Spark Streaming在处理实时数据流时如何确保数据既不丢失也不重复的方法。通过使用Kafka作为输入源,并介绍了Receiver-based和Direct两种方式,讨论了如何实现At-Least和Exactly-Once语义,以确保数据处理的准确性和一致性。

spark-streaming作为一个24*7不间断运行的程序来设计,但是程序都会crash,如果crash了,如何保证数据不丢失,不重复。

Input DStreams and Receivers

spark streaming提供了两种streaming input source:
  1. basic source: Source directly avaliable in the StreamingContext API. Examples: file,socket connnection
  2. advanced source: Source like kafka/kinesis, etc. are avaliable through extra utility classes.

本文只讨论高级数据源,因为针对流计算场景,基本数据源不适用。 
高级数据源,这里以kafka为例,kafka作为输入源,有两种方式: 
1. Receiver-based 方式 
2. Direct 方式 
两种方式的对比见博客:

保证数据不丢失(at-least)

spark RDD内部机制可以保证数据at-least语义。

Receiver方式

开启WAL(预写日志),将从kafka中接受到的数据写入到日志文件中,所有数据从失败中可恢复。

Direct方式

依靠checkpoint机制来保证。

保证数据不重复(exactly-once)

要保证数据不重复,即Exactly once语义。 
- 幂等操作:重复执行不会产生问题,不需要做额外的工作即可保证数据不重复。 
- 业务代码添加事务操作

dstream.foreachRDD {(rdd, time) =
  rdd.foreachPartition { partitionIterator =>
    val partitionId = TaskContext.get.partitionId()
    val uniqueId = generateUniqueId(time.milliseconds,partitionId)
    //use this uniqueId to transationally commit the data in partitionIterator
 }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

就是说针对每个partition的数据,产生一个uniqueId,只有这个partition的所有数据被完全消费,则算成功,否则算失效,要回滚。下次重复执行这个uniqueId时,如果已经被执行成功,则skip掉。

spark streaming 是基于 spark 引擎的实时数据处理框架,可以通过集成 kafka 来进行数据流的处理。然而,在使用 spark streaming 进行 kafka 数据流处理时,可能会遇到一些坑。 首先,要注意 spark streaming 和 kafka 版本的兼容性。同版本的 spark streaming 和 kafka 可能存在一些兼容的问题,所以在选择版本时要特别留意。建议使用相同版本的 spark streaming 和 kafka,以避免兼容性问题。 其次,要注意 spark streaming 的并行度设置。默认情况下,spark streaming 的并行度是根据 kafka 分区数来决定的,可以通过设置 spark streaming 的参数来调整并行度。如果并行度设置得过高,可能会导致任务处理过慢,甚至出现 OOM 的情况;而设置得过低,则可能无法充分利用集群资源。因此,需要根据实际情况进行合理的并行度设置。 另外,要注意 spark streaming 和 kafka 的性能调优。可以通过调整 spark streaming 缓冲区的大小、批处理时间间隔、kafka 的参数等来提高性能。同时,还可以使用 spark streaming 的 checkpoint 机制来保证数据的一致性和容错性。但是,使用 checkpoint 机制可能会对性能产生一定的影响,所以需要权衡利弊。 最后,要注意处理 kafka 的消息丢失和重复消费的问题。由于网络或其他原因,可能会导致 kafka 的消息丢失;而 spark streaming 在处理数据时可能会出现重试导致消息重复消费的情况。可以通过配置合适的参数来解决这些问题,例如设置 KafkaUtils.createDirectStream 方法的参数 enable.auto.commit,并设置适当的自动提交间隔。 总之,在使用 spark streaming 进行 kafka 数据流处理时,需要留意版本兼容性、并行度设置、性能调优和消息丢失重复消费等问题,以免踩坑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值