递归算法非常基础也非常实用,在实际应用中非常普遍。该代码很简单,但是对于理解递归思想非常好,就是通过一段代码的反复调用来实现某些功能,能够用少量的代码做很多事情,并且易读性很强。
package java11to20;
public class D16_Recursion {
public static void main(String args[]) {
int count = 5;
System.out.println(String.format("0 到 %s 和为:%s", count, sumToN(count)));
count = -1;
System.out.println(String.format("0 到 %s 和为:%s", count, sumToN(count)));
for (int i = 0; i < 15; i++) {
System.out.println("斐波那契数 " + i + ": " + fibonacci(i));
}
}
public static int sumToN(int par) {
if (par <= 0) {
return 0;
}
return sumToN(par - 1) + par;
}
public static int fibonacci(int par) {
if (par <= 0) {
return 0;
} else if (par == 1) {
return 1;
}
return fibonacci(par - 1) + fibonacci(par - 2);
}
}
输出结果:
0 到 5 和为:15
0 到 -1 和为:0
斐波那契数 0: 0
斐波那契数 1: 1
斐波那契数 2: 1
斐波那契数 3: 2
斐波那契数 4: 3
斐波那契数 5: 5
斐波那契数 6: 8
斐波那契数 7: 13
斐波那契数 8: 21
斐波那契数 9: 34
斐波那契数 10: 55
斐波那契数 11: 89
斐波那契数 12: 144
斐波那契数 13: 233
斐波那契数 14: 377