pandas硬编码

colorMap = {elem:index+1 for index,elem in enumerate(set(train_df["salary"]))}
train_df['salary'] = train_df['salary'].map(colorMap)
train_df

把每个特征名变成0 1 2 3 4 5 这种数字
写的函数 传递的是pandas读取的csv

def hard_code(train_df):
    dest_feature=["ProductCD","card4"]
    for name in dest_feature:
    
        colorMap = {elem:index+1 for index,elem in enumerate(set(train_df[name]))}
        train_df[name] = train_df[name].map(colorMap)
    return train_df
train_df=hard_code(train_df)
train_df
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追梦小狂魔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值