第十四周项目三

问题及代码:

*Copyright(c)2016,烟台大学计算机与控制工程学院 
 *All right reserved. 
 *文件名称:是否二叉排序树.cpp 
 *作者:张冰
 *时间:12月2日 
 *版本号;v1.0 
 *问题描述: 
          
 设计一个算法,判断给定的二叉树是否是二叉排序树。 
 *输入描述:用二叉树的形式输入数字 
 *程序输出:判断结果 
*/  

[cpp] view plain copy
#include <stdio.h>  
#include <malloc.h>  
#define MaxSize 100  
typedef int KeyType;                    //定义关键字类型  
typedef char InfoType;  
typedef struct node                     //记录类型  
{  
    KeyType key;                        //关键字项  
    InfoType data;                      //其他数据域  
    struct node *lchild,*rchild;        //左右孩子指针  
} BSTNode;  
int path[MaxSize];                      //全局变量,用于存放路径  
void DispBST(BSTNode *b);               //函数说明  
int InsertBST(BSTNode *&p,KeyType k)    //在以*p为根节点的BST中插入一个关键字为k的节点  
{  
    if (p==NULL)                        //原树为空, 新插入的记录为根节点  
    {  
        p=(BSTNode *)malloc(sizeof(BSTNode));  
        p->key=k;  
        p->lchild=p->rchild=NULL;  
        return 1;  
    }  
    else if (k==p->key)  
        return 0;  
    else if (k<p->key)  
        return InsertBST(p->lchild,k);  //插入到*p的左子树中  
    else  
        return InsertBST(p->rchild,k);  //插入到*p的右子树中  
}  
BSTNode *CreatBST(KeyType A[],int n)  
//由数组A中的关键字建立一棵二叉排序树  
{  
    BSTNode *bt=NULL;                   //初始时bt为空树  
    int i=0;  
    while (i<n)  
        InsertBST(bt,A[i++]);       //将A[i]插入二叉排序树T中  
    return bt;                          //返回建立的二叉排序树的根指针  
}  
  
void DispBST(BSTNode *bt)  
//以括号表示法输出二叉排序树bt  
{  
    if (bt!=NULL)  
    {  
        printf("%d",bt->key);  
        if (bt->lchild!=NULL || bt->rchild!=NULL)  
        {  
            printf("(");  
            DispBST(bt->lchild);  
            if (bt->rchild!=NULL) printf(",");  
            DispBST(bt->rchild);  
            printf(")");  
        }  
    }  
}  
  
/* 
int JudgeBST(BSTNode *bt)为判断一个树是否为排序二叉树设计的算法的实现 
*/  
KeyType predt=-32767; //predt为全局变量,保存当前节点中序前趋的值,初值为-∞  
int JudgeBST(BSTNode *bt)   //判断bt是否为BST  
{  
    int b1,b2;  
    if (bt==NULL)  
        return 1;    //空二叉树是排序二叉树  
    else  
    {  
        b1=JudgeBST(bt->lchild);   //返回对左子树的判断,非排序二叉树返回0,否则返回1  
        if (b1==0 || predt>=bt->key)  //当左子树非排序二叉树,或中序前趋(全局变量)大于当前根结点时  
            return 0;    //返回“不是排序二叉树”  
        predt=bt->key;   //记录当前根为右子树的中序前趋  
        b2=JudgeBST(bt->rchild);   //对右子树进行判断  
        return b2;  
    }  
}  
  
int main()  
{  
    BSTNode *bt;  
    int a[]= {43,91,10,18,82,65,33,59,27,73},n=10;  
    printf("创建排序二叉树:");  
    bt=CreatBST(a,n);  
    DispBST(bt);  
    printf("\n");  
    printf("bt%s\n",(JudgeBST(bt)?"是一棵BST":"不是一棵BST"));  
    bt->lchild->rchild->key = 30;  //搞个破坏!  
    printf("修改后的二叉树:");  
    DispBST(bt);  
    printf("\n");  
    printf("bt%s\n",(JudgeBST(bt)?"是一棵BST":"不是一棵BST"));  
    return 0;  
}  

运行结果:

知识点总结:

宏观来说,就是拿二叉树中所有“小树”的根节点与其左右节点比较。

学习心得:

在纸上的实践更容易明白细的知识点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值