安装第三方库文件
- opencv
- Dlib,安装方法见https://www.learnopencv.com/install-opencv-3-and-dlib-on-windows-python-only/
- Numpy
- Imutils (一系列使得opencv 便利的功能,包括图像旋转、缩放、平移,骨架化、边缘检测、显示matplotlib 图像(imutils.opencv2matplotlib(image))
传统方法进行眼角定位
思路是:
1、利用opencv 自带训练好的 haarcascade_frontalface_default.xml 和 haarcascade_eye.xml
来检测脸部和眼睛
以脸部加载xml为例:
face=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
face.load(脸部xml的完整路径)
以上是加载xml方法,有很多介绍直接是face=cv2.CascadeClassifier(脸部xml的完整路径),通常会报错。
2、加载完xml 文件后,下一步就是detect,opencv 函数为detectMultiScale(img,scaleFactor,minNeighbors,minsize,maxsize)
scaleFactor 是压缩率,越小金字塔数目越多,相应的检测准确相对好点
minNeighbors 是同一张脸至少被检测n次才认为是真正的
Minszie以元组方式,(检测眼睛时候会用到,避免鼻子和其他部位产生的假阳性)
3、先检测脸,然后再脸的基础上再检测眼睛,到了这一步后,就是自己设计检测的眼角方法:
1)找轮廓,取最大轮廓
2)凸缺陷检测,得到所有凸点
3)眼角如何确定?----将凸点的x,y值相加,排序,最小的为左边眼角,最大的为右边眼角(见测试图)
dlib 疲劳检测
- 下载shape_predictor_68_face_landmarks.dat 文件,这是68个眼部特征点
- 初始化检测器和预测器
detector=dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(“dat文件路径”)
3 如何确定疲劳?
1) 计算眼睛的宽高比
2)当前帧两双眼睛宽高比与前一帧的差值的绝对值大于0.2,则认为是疲劳
程序如下:
# -*- coding: utf-8 -*-
import os
import numpy as np
import cv2
import dlib
import sys
from imutils import face_utils
class fatigue(object):
def __init__(self,file_dictory,landmask_path,facehaar_path,eyehaar_path):
self.file=os.path.abspath(str(file_dictory))
os.chdir(self.file)
self.roi_face=[]
self.roi_eye=[]
# self.predictor_path=r'C:\Users\Y\Desktop\shape_predictor_68_face_landmarks.dat'
self.predictor_path=os.path.abspath(str(landmask_path))
# self.face_haar_path=r'E:\opencv\opencv\sources\data\haarcascades\haarcascade_frontalface_default.xml'
self.face_haar_path=os.path.abspath(str(facehaar_path))
# self.eye_haar_path=r'E:\opencv\opencv\sources\data\haarcascades\haarcascade_eye.xml'
self.eye_haar_path=os.path.abspath(str(eyehaar_path))
def detect_face(self):
face=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
face.load(self.face_haar_path)
i=1
for f in os.listdir(self.file):
face_image=cv2.imread(f)
face_image=cv2.medianBlur(face_image,3)
if face_image.ndim==3:
face_image_gray=cv2.cvtColor(face_image,cv2.COLOR_BGR2GRAY)
else:
face_image_gray=face_image
faces=face.detectMultiScale(face_image_gray,1.3,5)
if len(faces)!=0:
for (x,y,w,h) in faces:
self.roi_face.append(face_image[y:y+h,x:x+w,:])
# cv2.imwrite(self.file+"\\%g.jpg"%i,face_image_gray[y:y+h,x:x+w])
i+=1
print("人脸数%g"%len(self.roi_face))
def detect_eye(self):
eye=cv2.CascadeClassifier('haarcascade_eye.xml')
eye.load(self.eye_haar_path)
i=1
for face in self.roi_face:
eyes=eye.detectMultiScale(face,1.03,20,0,(40,40))#(40,40)限制眼睛搜索最小尺寸,避免鼻子或者其他的阴影产生的假阳性
if len(eyes)!=0:
for (x,y,w,h) in eyes:
self.roi_eye.append(face[y:y+h,x:x+w,:])
# cv2.imwrite(self.file+"\\%g.jpg"%i,face[y+10:y+h,x+10:x+w,:])
i+=1
print("眼睛个数%g"%len(self.roi_eye))
#传统
def feature_eye(self):
i=1
for e in self.roi_eye:
e_g=cv2.cvtColor(e,cv2.COLOR_BGR2GRAY)
_,thresh=cv2.threshold(e_g,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
_,cnts,h=cv2.findContours(thresh,0,1)
cnt_max=sorted(cnts,key=lambda x:cv2.contourArea(x),reverse=True)[0]
con_hull=cv2.convexHull(cnt_max)
hull_index=cv2.convexHull(cnt_max,returnPoints = False)
defects = cv2.convexityDefects(cnt_max,hull_index)
temp=[]
point=[]
for j in range(defects.shape[0]):
_,_,f,d=defects[j,0]
point.append(tuple(cnt_max[f][0]))
for t in point:
temp.append(sum(t))
index=np.argsort(temp)
close=point[index[0]]#两个眼角,colse,far
far=point[index[-1]]
# np.sort()
cv2.circle(e,close,5,(0,255,0),-1)
cv2.circle(e,far,5,(0,255,0),-1)
cv2.drawContours(e,[con_hull],0,(0,0,255),2)
cv2.putText(e,str(cv2.contourArea(cnt_max)),(10,10),cv2.FONT_HERSHEY_SIMPLEX,0.5,(255,0,0))
cv2.imwrite(self.file+"\\%g.jpg"%i,e)
i+=1
def dlib_detect(self):
detector=dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(self.predictor_path)
cap=cv2.VideoCapture(0)#也可以其它视频,打开本地摄像头
if cap.isOpened() is False:
raise("IO error") #抛出异常
cap.set(cv2.CAP_PROP_FPS,60)
# cv2.namedWindow("Capture", cv2.WINDOW_NORMAL)
forward_left_eye_ratio=None
forward_right_eye_ratio=None
flag=0 #根据faces个数来初始化forward_left....
while 1:
ret,frame=cap.read()
frame=cv2.medianBlur(frame,3)
# frame=cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
if ret==False:
sys.exit()
faces=detector(frame,1)#1 代表图像升采样一次,以便我们检测更多的人脸
if len(faces)>0:
if flag==0: #以第一帧检测到人脸个数为准,也就是程序每一帧检测到人脸个数相同,不然有错
temp=np.zeros((len(faces),1)) #初始化成一个数组
forward_left_eye_ratio,forward_right_eye_ratio=temp,temp
else:
# sys.exit()
# print("当前帧人脸消失,退出")
print("当前帧人脸消失,继续下一帧")
# break
continue
flag=1 #flag=1,标识着第二帧的时候不再预分配内存,temp
if len(faces)>0:
for i,d in enumerate(faces):
cv2.rectangle(frame,(d.left(),d.top()),(d.right(),d.bottom()),(0,255,0),2)
cv2.putText(frame,str(i+1),(d.left()-10,d.top()-10),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,255),2)
shape=predictor(frame,d)#检测68特征点
# print(shape,type(shape))
points = face_utils.shape_to_np(shape) #将脸部特征点转为坐标(x,y)
long_left=self.distance(points[36,:],points[39,:])
short_left=self.distance((points[37,:]+points[38,:])/2,(points[41,:]+points[40,:])/2)
long_right=self.distance(points[42,:],points[45,:])
short_right=self.distance((points[43,:]+points[44,:])/2,(points[46,:]+points[47,:])/2)
if forward_left_eye_ratio[i]==0 and forward_right_eye_ratio[i]==0:#取第一帧的人脸眼睛宽高比,取完后,进行下一帧,continue 后的语句不再执行
forward_left_eye_ratio[i]=short_left/long_left
forward_right_eye_ratio[i]=short_right/long_right
continue #跳转下一个人脸眼睛的宽高比
##下一帧
left_eye_ratio_now=np.zeros((forward_left_eye_ratio.shape))
right_eye_ratio_now=np.zeros((forward_right_eye_ratio.shape))
left_eye_ratio_now[i]=short_left/long_left
right_eye_ratio_now[i]=short_right/long_right
print("第%g个人脸当前左眼宽高比与前一帧的差值:%g"%(i+1,abs(left_eye_ratio_now[i]-forward_left_eye_ratio[i])))
if abs(left_eye_ratio_now[i]-forward_left_eye_ratio[i])>0.2:
print("第%g个人左眼变化%g"%(i+1,abs(left_eye_ratio_now-forward_left_eye_ratio)))
if abs(right_eye_ratio_now[i]-forward_right_eye_ratio[i])>0.2:
print("第%g个人左眼变化%g"%(i+1,abs(right_eye_ratio_now-forward_right_eye_ratio)))
if abs(left_eye_ratio_now[i]-forward_left_eye_ratio[i])>0.2 and abs(right_eye_ratio_now[i]-forward_right_eye_ratio[i])>0.2:
print("%g号先生您很疲劳了,请注意休息"%(i+1))
forward_left_eye_ratio[i]=left_eye_ratio_now[i]
forward_right_eye_ratio[i]=right_eye_ratio_now[i]
cv2.imshow("Capture",frame)
k=cv2.waitKey(10)
if k==27:
break
cap.release()
cv2.destroyAllWindows()
def distance(self,p1,p2):
return np.sqrt(np.sum((p1-p2)*(p1-p2)))
if __name__=="__main__":
# param=sys.argv[1]
print("cmd---运行格式--python '****.py' 图像demo1文件夹路径 68_face_landmarks.dat路径 haarcascade_frontalface_default.xml路径 haarcascade_eye.xml路径")
if len(sys.argv)!=5:
print("参数不够")
# fold_param=r'C:\Users\Y\Desktop\demo1'
# fatigue_drive=fatigue(fold_param)
fatigue_drive=fatigue(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4])
print("**********传统方法人眼角定位*************\n")
fatigue_drive.detect_face()
fatigue_drive.detect_eye()
fatigue_drive.feature_eye()
print("*************疲劳测试************\n")
fatigue_drive.dlib_detect()
测试图: