二叉树的性质:
1、二叉树的第i层上至多有2的(i-1)次方个节点;
2、深度为k的二叉树的最大节点数目为2的k次方-1个节点。
3、对于任何一颗二叉树T,如果终端节点数为m,度为2的节点数n,则m=n+1。
满二叉树:深度为K且节点为2的K次方 -1;每一层的节点都是该层的最大数目
完全二叉树:对满二叉树由上至下,由左至右的顺序进行编号。在二叉树中每个节点的号码都和满二叉树的编号顺序一样,则是完全二叉树。
完全二叉树,只有最下面的一层节点个数可以不是最大值,并且最后一层的节点都必须在左边。就是说叶子节点只在后两层出现。
并且,对于任一节点,其右分之下的的子孙最大层次为L,其左分支下的子孙最大层次必为L或者L+1。
具有n个节点的完全二叉树的深度为 Log2 N + 1:
如果有一棵N个节点的完全二叉树:
(1) 如果i=1,则结点i是二叉树的跟,如果i>1,则其双亲结点的编号是 i/2(取整数)
(2)如果2i>n,则结点i无左孩子,否则其左孩子的结点是2i。
(3)如果2i+1>n,则结点i无右孩子, 否则右孩子节点是2i+1.